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1. Introduction

N = 8 supergravity [1] is a remarkable theory, being the maximally supersymmetric field

theory containing gravity that is consistent with unitarity. It is a beautiful but complicated

theory containing (massless) particles of all spins (≤ 2) whose interactions are constrained

by a large symmetry group.

This article explores the perturbative expansion of this theory. It has been postulated

that the perturbative expansion of this theory is more akin to that of N = 4 super Yang-

Mills theory than expected from its known symmetries. In particular, it is hypothesised

that the one-loop amplitudes can be expressed as scalar box functions with rational coeffi-

cients [2]. We provide considerable evidence for this “no-triangle hypothesis” by examining

the behaviour of physical on-shell amplitudes.

This dramatic simplification of the one-loop amplitudes is presumably a signature of an

undiscovered symmetry or principle present in N = 8 supergravity. These simplifications do

not occur on a “diagram by diagram” basis in any current expansion scheme, instead they

arise only when the diagrams are summed. Theories of supergravity in four dimensions are

one (and two) loop finite [3]. Since the box functions are UV finite, the simplifications we see

are certainly consistent with these arguments. However the cancellations are considerably

stronger than they demand: for example theories with N < 8 supergravity are UV finite

at one-loop but the one-loop amplitudes are not merely box functions.

In this article, we consider one-loop amplitudes and care must be used in extending the

implications beyond one-loop. However, we do expect the higher loops to have a softer UV

structure than previously thought[4]. This opens the door to the possibility that N = 8

supergravity may, like N = 4 super Yang-Mills, be a finite theory in four dimensions.

2. The no-triangle hypothesis

2.1 Background: one-loop amplitudes

First we review the general structure of one-loop amplitudes in theories of massless par-

ticles. Consider the general form for an n-point amplitude obtained from, for example, a

Feynman diagram calculation 1,

M1-loop
n (1, · · · , n) =

∑

Feynman diagrams

Ir[P
m(l, {ki, εi})] , (2.1)

where each Ir is a loop momentum integral with r propagators in the loop and numerator

Pm(l, {ki, εi}). Here ki denotes the external (massless) momenta, εi denotes the polari-

sation tensors of the external states and l denotes the loop momentum. For clarity we

suppress the ki and εi labels. In general the numerator is a polynomial of degree m in

the loop momentum. The value of m depends on the theory under consideration. The

summation is over all possible diagrams.

We choose to organise the diagrams according to the number of propagators in the

loop, r . For r = n the integral will have only massless legs, while for r < n at least

1For simplicity we restrict ourselves to covariant gauges with Feynman gauge-like propagators ∼ 1/p2
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one of the legs attached to the loop will have momentum, K = ka + · · · kb, which is not

null, K2 6= 0. We will call these massive legs (although it is a slight misnomer in a purely

massless theory).

An important technique for dealing with these integrals is that of Passarino-Veltman

Reduction [5] which reduces any r-point integral to a sum of (r−1) point integrals (r > 4),

Ir[P
m(l)] −→

∑

i

Ii
r−1[P

m−1(l)] . (2.2)

We will be evaluating the loop momentum integrals by dimensional regularisation in D =

4−2ε and working to O(ε). In the reduction the degree of the loop momentum polynomial

is also reduced by 1 from m to (m − 1). The (r − 1) point functions appearing are those

which may be obtained from Ir by contracting one of the loop legs. This process can be

iterated until we obtain four point integrals,

Ir[P
m(l)] −→

∑

i

Ii
4[P

m−(r−4)(l)] . (2.3)

The four point integrals reduce

Ii
4[P

m′

(l)] −→ ci Ii
4[1] +

∑

j

Ij
3 [P

m′−1(l)] , (2.4)

where we now have the “scalar box functions”, I4[1], whose loop momentum polynomials

are just unity. The coefficients ci are rational functions of the momentum invariants of the

amplitude (By rational we really mean non-logarithmic, since these coefficients may contain

Gram determinants.) Similarly, reduction of polynomial triangles gives scalar triangles plus

tensor bubble integral functions,

Ij
3 [P

m(l)] −→ dj Ij
3 [1] +

∑

k

Ik
2 [Pm−1(l)] . (2.5)

Finally we can express the tensor bubbles as scalar bubble functions plus rational terms,

Ik
2 [Pm(l)] = ek Ik

2 [1] + R + O(ε) (2.6)

Consequently any one-loop amplitude can be reduced to the form,

M1-loop
n (1, · · · , n) =

∑

i∈C

ci Ii
4 +

∑

j∈D

dj Ij
3 +

∑

k∈E

ek Ik
2 + R + O(ε), (2.7)

where the amplitude has been split into a sum of integral functions with rational coefficients

and a rational part. The sums run over bases of box, triangle and bubble integral functions:

C, D and E . Which integral functions appear in a specific case will depend on the theory

and process under consideration, as will be discussed below.

– 3 –
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2.2 N = 4 super Yang-Mills amplitudes

For Yang-Mills amplitudes the three-point vertex is linear in momentum, so generically

an r-point integral function has a loop momentum polynomial of degree r. In general,

a Passarino-Veltman reduction gives one-loop amplitudes containing all possible integral

functions.

For supersymmetric theories cancellations between the different types of particle cir-

culating in the loop lead to a reduction in the order of the loop momentum polynomial.

For N = 4 super Yang-Mills amplitudes, formalisms exist where four powers of loop mo-

mentum cancel and the generic starting point for the reduction is a polynomial of degree

m = (r − 4). This implies that the amplitude consists only of box and higher point inte-

grals which, via a Passarino-Veltman reduction (2.3), give a very restricted set of functions:

namely scalar box-functions,

A1-loop
N=4 =

∑

i∈C

ci Ii
4 . (2.8)

These cancellations can be more or less transparent depending on the gauge fixing and

computational scheme employed. In general the manifest diagram by diagram cancellation

is less than the maximal four powers. Schemes in which these cancellations are manifest

include the Bern-Kosower string based rules [6] (where technically the cancellation occurs

at the level of Feynman parameter polynomials) and well chosen background field gauge

schemes [7]. In less favourable schemes cancellations between diagrams occur relatively

late in the calculation.

2.3 N = 8 supergravity amplitudes

Computation schemes for gravity calculations tend to be rather more complicated than for

Yang-Mills as the three-point vertex is quadratic in momenta and so the loop momentum

polynomial is of degree 2r [8]. For maximal supergravity we expect to see considerable

cancellations.

In string theory, closed strings contain gravity and open strings contain gauge theories,

so the heuristic relation,

closed string ∼ (open-string) × (open-string) , (2.9)

suggests a relationship between amplitudes of the form,

gravity ∼ (Yang-Mills) × (Yang-Mills) , (2.10)

in the low energy limit. For tree amplitudes this relationship is exhibited by the Kawai-

Lewellen-Tye relations [9]. Even in low energy effective field theories for gravity [10] the

KLT-relations can be seen to link effective operators [11]. The KLT-relations also hold

regardless of massless matter content [12]. For one-loop amplitudes we expect such relations

for the integrands of one-loop amplitudes rather than the amplitudes themselves. Indeed,

the equivalent of the Bern-Kosower rules for gravity [13, 14] give an initial loop momentum

polynomial of degree,

2r − 8 = 2(r − 4) . (2.11)
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This power counting is consistent with the heuristic expectation of string theory.

Using this power counting, reduction for r > 4 leads to a sum of tensor box integrals

with integrands of degree r − 4 which would then reduce to scalar boxes and triangle,

bubble and rational functions,

M1-loop
N=8 =

∑

i∈C

ci Ii
4 +

∑

j∈D

dj Ij
3 +

∑

k∈E

ek Ik
2 + R , (2.12)

where we expect that the triangle functions I3 are present for n ≥ 5, the bubble functions

I2 for n ≥ 6 and the rational terms for n ≥ 7. Note that functions, other than the scalar

boxes, only appear after reduction.

2.4 The no-triangle hypothesis

The “No-triangle hypothesis” states that any one-loop amplitude of N = 8 supergravity is

a sum of box integral functions multiplied by rational coefficients,

M1-loop
N=8 =

∑

i∈C

ci Ii
4 . (2.13)

The hypothesis originates from explicit computations which show that despite the previ-

ous power counting arguments, one-loop amplitudes for N = 8 supergravity have a form

analogous to that of one-loop N = 4 super Yang-Mills amplitudes.

The first definite calculation of a one-loop amplitude for both N = 4 super Yang-Mills

and N = 8 supergravity was performed by Green, Schwarz and Brink [15]. By taking the

low energy limit of string theory, they obtained the four point one-loop amplitudes:

A1-loop
(1,2,3,4) = st × Atree

(1,2,3,4) × I4(s, t) ,

M1-loop
(1,2,3,4) = stu × M tree

(1,2,3,4)

(

I4(s, t) + I4(s, u) + I4(t, u)
)

.
(2.14)

Here I4(s, t) denotes the scalar box integral with attached legs in the order 1234 and

s, t and u are the usual Mandelstam variables. The above Yang-Mills amplitude is the

leading in colour contribution. For gravity amplitudes we suppress factors of κ ( κn−2 for

tree amplitudes and κn for one-loop amplitudes.) Although only composed of boxes, this

gravity amplitude is consistent with the power counting of 2(r − 4) with r ≤ n.

Beyond four-point we expect to find contributions from other integral functions in ad-

dition to the boxes. However in ref. [16] the five and six-point MHV 2 amplitudes were

evaluated using unitarity techniques and shown to consist solely of box integral functions.

It was conjectured that this behaviour continued to all MHV amplitudes and an all-n ansatz

2Amplitudes are conveniently organised according to the number of negative helicity external states.

For amplitudes with “all-positive” or “one negative the remaining positive” helicity configurations the tree

amplitudes vanish for any gravity theory and the loop amplitudes vanish for any supergravity theory. The

first non-vanishing amplitudes are those with two negative helicity gravitons, known as “Maximally Helicity

Violating” or MHV amplitudes. Amplitudes with three negative helicity gravitons are “next-to-MHV” or

NMHV amplitudes. Amplitudes with exactly two positive helicity gravitons and the remaining negative

helicity can be obtained by conjugation and are known alternatively as “googly amplitudes” or, as used by

us, MHV .
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consisting of box functions was presented. This ansatz was also consistent with factorisa-

tion. In ref. [2] is was postulated that this was a general feature of N = 8 amplitudes. In

ref. [17] the hypothesis was explored for the six-point NMHV amplitude and it was shown

that the boxes alone gave the correct IR behaviour of the amplitude.

In this paper we aim to present further evidence in favour of the “no-triangle hypoth-

esis”. While we fall short of presenting a proof, we feel that the weight of evidence is

compelling. The evidence is based on IR structure, unitarity and factorisation. In the

six-point case this evidence does constitute a proof.

3. Evidence for the no-triangle hypothesis

We use a range of techniques to study different parts of the amplitude: unitarity, factori-

sation and the singularity structure of the on-shell physical amplitudes. Our arguments

are complete for n ≤ 6 point amplitudes. Fortunately there has been considerable progress

in computing one-loop amplitudes inspired by the duality with twistor space [18 – 31]: we

will freely use many of these new techniques.

We use arguments based on the IR divergences of the amplitude to conclude that the

one and two-mass triangles must vanish. We use a study of the two-particle cuts to deduce

that the bubble integrals are absent and, by numerically examining triple cuts, we show

that the coefficients of three-mass triangles vanish. Finally we use factorisation arguments

to discuss the rational pieces of the amplitude.

3.1 IR: soft divergences

The expected soft divergence of an n-point one-loop graviton amplitude [32] is,

Mone−loop
(1,2,...,n)

∣

∣

∣

soft
=

iκ2

(4π)2

[

∑

i<j sij ln[−sij]

2ε

]

×M tree
(1,2,...,n) . (3.1)

(The factors of κ have been reinstated in the amplitudes within this equation.) For a general

amplitude the boxes with three or fewer massive legs, the one and two mass triangles and

the bubble integrals all have 1/ε singularities which can contribute to the above.

A necessary condition for the no-triangle hypothesis is that the box contributions alone

yield the complete 1/ε structure. In other words,

∑

i∈C

ci I
i
4

∣

∣

∣

1/ε
=

i

(4π)2

[

∑

i<j sij ln[−sij]

2ε

]

×M tree
(1,2,...,n) . (3.2)

If this condition is satisfied, it implies the vanishing of a large number of the triangle

coefficients, specifically that the one and two-mass triangle functions are not present. The

one- and two-mass triangles are actually not an independent set of integral functions. As

shown in the appendix they can be replaced by a set of basis functions,

G(−K2) =
(−K2)−ε

ε2
=

1

ε2
− ln(−K2)

ε
+ finite , (3.3)
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where the set of G’s runs over all the independent momentum invariants, K2, of the

amplitude. These functions plus the boxes then give the only ln(−K2)/ε contributions

to the amplitude since the 1/ε terms in bubbles do not contain logarithms. If the boxes

completely reproduce the required singularity, the coefficients of the G functions must be

zero and consequently the coefficients of the one- and two-mass triangles can be set to zero,

d1m,i = d2m,i = 0 . (3.4)

Having the correct soft behaviour only imposes a single constraint on the sum of the bubble

coefficients,
∑

i

ei = 0 , (3.5)

and, importantly, places no constraint on the three-mass triangles as they are IR finite.

To verify the IR behaviour, one must know the box coefficients. Fortunately, there

has been considerable progress in computing the box coefficients in gauge theory. Box

coefficients may be determined using unitarity [33, 34]. In ref. [35], Britto, Cachazo and

Feng showed that quadruple cuts can be used to algebraically obtain box coefficients from

the four tree amplitudes at the corners of the cut box. Specifically, if we consider an

amplitude containing a scalar box integral function, the coefficient of this function is given

by the product of four tree amplitudes with on-shell cut legs [35],

c =
1

2

∑

hi∈S

(

M tree
(

(−`1)
−h1 , i1, . . . , i2, (`2)

h2
)

× M tree
(

(−`2)
−h2 , i3, . . . , i4, (`3)

h3
)

× M tree
(

(−`3)
−h3 , i5, . . . , i6, (`4)

h4
)

× M tree
(

(−`4)
−h4 , i7, . . . , i8, (`1)

h1
)

)

.

(3.6)

Here S indicates the set of possible particle and helicity configurations of the legs `i which

give a non-vanishing product of tree amplitudes We often denote the above coefficient by

the clustering on the legs, c[{i1···i2},{i3···i4},{i5···i6},{i7···i8}]. In the above the tree amplitudes

at massless corners require analytic continuation.

The box coefficients may also be obtained from the known box coefficients for N = 4

Yang-Mills [34, 18, 19] by squaring and summing [2]. For example for the three-mass boxes

within the seven-point NMHV amplitude we have,

c
[1−,{4+5+},{2−3−},{6+7+}]
N=8 = 2s23s45s67 c

[1−,{4+5+},{2−3−},{6+7+}]
N=4 c

[1−,{5+4+},{3−2−},{7+6+}]
N=4

,

(3.7)

which allows us to obtain the N = 8 coefficients from the N = 4 box coefficients.

We have computed the IR behaviour of the six and seven-point NMHV amplitudes.

The six-point box coefficients are given in ref. [17] and the seven-point box coefficients are

given in appendix A. In both cases amplitudes were constructed using these box-coefficients

and, after some computer algebra, the resultant amplitudes were found to reproduce the

complete IR behaviour. This allows us to conclude that,

d2m,i = d1m,i = 0 for n = 6, 7. (3.8)

– 7 –
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3.2 Two-particle cuts

A general unitarity cut of the amplitude Mn(1, 2, . . . n) in the channel carrying momentum

P = ki + . . . kj, is given by a sum of phase space integrals of products of tree amplitudes,

Ci···j = i
∑

h1,h2∈S′

∫

dLIPS(−l1, l2) M tree
(

(−l1)
−h1, i, · · · , j, (l2)

h2
)

× M tree
(

(−l2)
−h2 , j + 1, · · · , i − 1, (l1)

h1
)

,

(3.9)

where S ′ denotes the helicities of the particles from the N = 8-multiplet that can run in

the loop. This unitarity cut is equal to the leading discontinuity of the loop amplitude,

∑

i∈C

ci I
i
4 +

∑

j∈D

dj Ij
3 +

∑

k∈E

ek Ik
2

∣

∣

∣

Disc

= i

∫

dLIPS(−l1, l2)





∑

i∈C′

ci

(l1 − Ki,4)2(l2 − Ki,2)2
+

∑

j∈D′

dj

(l1 − Kj,3)2
+ ek′



 .

(3.10)

The sets of box and triangle functions that contribute to a given cut are denoted by C′

and D′ respectively and the single bubble function that contributes is labelled by k′. In

principle the coefficients of all the integral functions can be obtained by performing all

possible two-particle cuts. In practice it is often simpler to determine the box and triangle

coefficients by other means before using the two-particle cuts to determine the bubble

terms. The rational pieces of the amplitude are not “cut-constructible” [33, 34].

To show that a given integral function is absent from the amplitude we have to show

that its contribution to the cut integral vanishes. This test may be done by either evaluating

the cut integral explicitly or, equivalently, by algebraically reducing the integrand to a sum

of constant coefficients times specific products of propagators, that are the signatures of

the cuts of specific integral functions.

3.3 Bubble integrals from the two-particle cuts

In this section we will show, by explicit computation of the two-particle cuts, that all

bubble integrals in the six-point amplitudes vanish. These arguments can also be used to

show that bubble integrals are absent from all the cuts of all-n one-loop MHV amplitudes

as discussed in section (4.2).

Recently, the realisation that Yang-Mills amplitudes are dual to a twistor string the-

ory [36] has given considerable impetus to gauge theory calculations. In particular, it

appears that the two-particle cuts can be efficiently calculated if expressed in spinor or

twistor variables [30].

Consider the two-particle cut,

C12 =i

∫

dµ M tree
4

(

(−l1)
+, 1−, 2−, (l2)

+
)

× M tree
6

(

(l1)
−, 3−, 4+, 5+, 6+, (−l2)

−
)

,

where dµ = d4l1d
4l2δ

(+)(l21)δ
(+)(l22)δ

(4)(l1 − l2 − k1 − k2),

(3.11)
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with a graviton running in the loop. We denote the integrand by I(l1, l2). Setting l1 = t`

with `aȧ = λaλ̃ȧ, the measure becomes [37, 30],

d4l1δ
(+)(l21) = tdt 〈λdλ〉

[

λ̃ dλ̃
]

, (3.12)

so that the cut becomes,

C12 = i

∫

dµ I(l1, l2) = i

∫ ∞

0
tdt

∫

〈λdλ〉
[

λ̃ dλ̃
]

δ(+)
(

P 2 − tPaȧλ
aλ̃ȧ

)

I
(

t`,−P − t`
)

= i

∫

〈λdλ〉
[

λ̃ dλ̃
] P 2

(Paȧλaλ̃ȧ)2
I
(

P 2

Paȧλaλ̃ȧ
`,−P − P 2

Paȧλaλ̃ȧ
`

)

,

(3.13)

where P denotes the total momentum on one side of the cut. In the example above,

P = k1 + k2. Powers of l1 within I give rise to powers of t which in turn give rise to extra

powers of P 2/(Paȧλ
aλ̃ȧ) due to the δ(P 2 − tPaȧλ

aλ̃ȧ)-function. Thus in general the cut

will be a sum of terms with different powers of (Paȧλ
aλ̃ȧ),

C12 =

∫

〈λdλ〉
[

λ̃ dλ̃
]

∑

n

fn(λ, λ̃)

(Paȧλaλ̃ȧ)n
. (3.14)

The key observation of [30, 38] is that the different classes of integral function that con-

tribute to the cut can be recognised by the powers of (Paȧλ
aλ̃ȧ) that are present. Generi-

cally, any term containing, 1/(Paȧλaλ̃ȧ)n with n < 2 in C12 will not generate a contribution

to the coefficient of any bubble integral function. In terms of t, such terms correspond to

terms in I of the form tm with m < 1. In the following we show that only terms of this form

arise in two-particle cuts of the six-point one-loop amplitudes and hence that no bubble

integral functions contribute to these amplitudes.

The NMHV amplitude M1-loop(1−, 2−, 3−, 4+, 5+, 6+) has four inequivalent cuts up to

relabelling of external legs; C12, C34, C123 and C234. Of these C12 and C123 are what we

call singlet cuts. These cuts vanish unless the two outgoing cut legs have the same helicity,

implying that these states can only be gravitons. These singlet cuts are thus independent

of the matter content of the theory and the absence of bubble functions is independent

of the number of supersymmetries. For the non-singlet cuts, the two outgoing cut legs

have opposite helicity and so the full N = 8 multiplet contributes. For these cuts, bubble

functions are only absent from the N = 8 amplitudes.

+

+

−

−

•
•

•
•

SINGLET

+

−

−

+

•
•

•
•

NON-SINGLET

We now examine the four distinct cuts in turn. First we consider C123, as this is the

simplest: it is a singlet cut and the tree amplitudes that appear are either MHV or MHV

– 9 –
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amplitudes. Explicitly the product of tree amplitudes is,

M tree
MHV

(

(−l1)
+,1−, 2−, 3−, (l2)

+
)

× M tree
MHV

(

(−l2)
−, 4+, 5+, 6+, (l1)

−
)

.

= − [l1 l2]
8 [3 l1] 〈l1 1〉 [1 2] 〈2 3〉 − 〈3 l1〉 [l1 1] 〈1 2〉 [2 3]

[l1 l2] [l1 1] [l1 2] [l1 3] [l2 1] [l2 2] [l2 3] [1 2] [1 3] [2 3]

× 〈l1 l2〉8
〈6 l1〉 [l1 4] 〈4 5〉 [5 6] − [6 l1] 〈l1 4〉 [4 5] 〈5 6〉

〈l1 l2〉 〈l1 4〉 〈l1 5〉 〈l1 6〉 〈l2 4〉 〈l2 5〉 〈l2 6〉 〈4 5〉 〈4 6〉 〈5 6〉 .

(3.15)

This can be simplified to,

−
(

P 2
123

)10

[1 2] [1 3] [2 3] 〈4 5〉 〈4 6〉 〈5 6〉×
(

[3 l1] 〈l1 1〉 [1 2] 〈2 3〉 − 〈3 l1〉 [l1 1] 〈1 2〉 [2 3]
)(

〈6 l1〉 [l1 4] 〈4 5〉 [5 6] − [6 l1] 〈l1 4〉 [4 5] 〈5 6〉
)

[l1 1] [l1 2] [l1 3] 〈l1 4〉 〈l1 5〉 〈l1 6〉∏

x=1,2,3 〈l1|P123|x]
∏

y=4,5,6 [l1|P123|y〉
(3.16)

Substituting l1 = tl into the above term we find a factor of 1/t4 and hence there are no

bubble contributions to this cut.

Next we consider C234. Again the tree amplitudes are either MHV or MHV amplitudes,

but this is a non-singlet cut, so we must include a summation over the super-multiplet.

MHV(MHV ) tree amplitudes with a single pair of non-graviton particles are related to the

corresponding pure graviton amplitude by simple factors, X(h). The summed integrand is

most naturally expressed in terms of tree amplitudes with a scalar circulating in the loop

and a ρ-factor. Using a superscript s to denote a scalar in the loop, we have,

∑

h∈S′

M tree
(

(−l1)
−h, 2−, 3−, 4+, (l2)

h
)

× M tree
(

(−l2)
−h, 5+, 6+, 1−, (l1)

h
)

= M tree
(

(−l1)
s, 2−, 3−, 4+, (l2)

s
)

× M tree
(

(−l2)
s, 5+, 6+, 1−, (l1)

s
)

∑

h∈S′

X(h)

= ρ × M tree
(

(−l1)
s, 2−, 3−, 4+, (l2)

s
)

× M tree
(

(−l2)
s, 5+, 6+, 1−, (l1)

s
)

,

(3.17)

where,

ρ =
∑

h∈S′

X(h)=

a=4
∑

a=−4

8!

(4 − a)!(4 + a)!

(

x

y

)a

=
(x + y)8

x4y4
=

〈1|P234|4]8
(

[4 l1] [4 l2] 〈1 l1〉 〈1 l2〉
)4 .

(3.18)

The factor nh = 8!/((4 − a)!(4 + a)!) is the multiplicity within the N = 8 multiplet of the

states of helicity h = a/2. Rewriting the amplitude in terms of l1 we can count the powers

of t. Overall the leading contributions are O(t−4), just as in the singlet case. Once again

the cut receives no contributions from bubble functions.

The remaining cuts are algebraically more complicated, but they repeat the patterns

seen above. C12 is a singlet cut involving the product of a four-point MHV amplitude,

M tree
(

(−l1)
+, 1−, 2−, (l2)

+
)

, and a six-point NMHV amplitude, M tree((−l2)
−, 3−, 4+, 5+,

6+, (l1)
−). The six-point NMHV tree amplitude has only recently been calculated using

– 10 –
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on-shell recursion [39 – 41]. An explicit form for this amplitude as a sum of fourteen terms

is given in appendix C.3

We will illustrate here how one of the terms gives a contribution that vanishes at large

t. The remaining thirteen terms will follow analogously and thus we see term-by-term that

this cut receives no contributions from bubble functions. The singlet 12-cut reads,

C12 = i

∫

dµ M4

(

(−l1)
+, 1−, 2−, (l2)

+
)

× M6

(

(−l2)
−, 3−, 4+, 5+, 6+, (l1)

−
)

, (3.19)

where the four-point amplitude is,

M4

(

(−l1)
+, 1−, 2−, (l2)

+
)

=
i 〈1 2〉7 [1 2]

〈1 l1〉 〈1 l2〉 〈2 l1〉 〈2 l2〉 〈l1 l2〉2
, (3.20)

and the six-point amplitude is given in [17]. We will in this example analyse the contribution

to the cut given by the term Gns
4 [−l2, 3, 5, 4, 6, l1 ] in the full amplitude,

M6

(

(−l2)
−, 3−, 4+, 5+, 6+, (l1)

−
)

|Gns
4 [−l2,3,5,4,6,l1] =

is35s46sl1l2 [5 |Pl235|l1〉7
〈46〉2 〈4l1〉 〈6l1〉 [35]2 [3l2] [5l2] [3 |Pl235|l1〉[l2 |Pl235|4〉[l2 |Pl235|6〉t35l2

,
(3.21)

so that the integrand of (3.19) is,

−〈12〉7 [12]

〈1l1〉〈1l2〉〈2l1〉〈2l2〉〈l1l2〉2
×

s35s46sl1l2 [5 |Pl235|l1〉7
〈46〉2 〈4l1〉 〈6l1〉 [35]2 [3l2] [5l2] [3|Pl235|l1〉[l2|Pl235|4〉[l2|Pl235|6〉t35l2

,

(3.22)

which can be written as,

C × [5 |Pl235|l1〉7
〈1l2〉〈1l1〉〈2l2〉〈2l1〉〈l2l1〉2〈4l1〉〈6l1〉 [3l2][5l2] [3 |Pl235|l1〉[l2|Pl235|4〉[l2|Pl235|6〉t35l2

,

(3.23)

where,

C =
s35s46s

2
12 〈1 2〉6

〈46〉2 [35]2
. (3.24)

3In general much less is known about gravity tree amplitudes than Yang-Mills amplitudes. Traditional

Feynman diagram approaches tend to be excessively complicated as evidenced by the computation by

Sannon [8] of the four-point tree amplitude. The KLT relations, which express the gravity amplitudes as

sums of permutations of products of two Yang-Mills amplitudes [9], are an extremely useful technique,

however the factorisation structure is rather obscure and the permutation sum grows quickly with the

number of legs. Of the new techniques, the BCF recursion readily extends to gravity amplitudes [40, 41]

giving useful compact results. The MHV-vertex approach of Cachazo, Svrček and Witten also extends to

gravity [42] although the correct analytic continuation of the MHV gravity vertices is only clear after using

the appropriate factorisation [43]. Currently, there is no Lagrangian based proof of these techniques such

as exists for Yang-Mills [44], however we have numerically checked the expressions for both MHV vertices

and recursion against the KLT expressions for amplitudes with seven or fewer points.
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Now transforming all l2 into l1 using [Xl2] →
[X|P12|l1〉

〈l2l1〉
and 〈Y l2〉 →

〈Y |P12|l1]
[l2l1]

we get,

s2
12C

〈1 2〉2
×H(|l1〉) ×

1

[2 l1] [1 l1] t46l1

, (3.25)

where,

H(|l1〉) =
[5|P46|l1〉7

〈1l1〉 〈2l1〉 〈4l1〉 〈6l1〉 [3|P12|l1〉[5|P12|l1〉[3|P46|l1〉〈l1|P12P46|4〉〈l1|P12P46|6〉
.

Now we have to count the number of factors of t. We get a total count of 1/t2 hence no

bubbles integral functions are present in the cut.

The remaining C34 cut is non-singlet and so we again need to sum over the multiplet.

Explicit forms for the relevant six-point amplitudes involving an arbitrary pair of particles

plus gravitons are given in appendix C. These tree amplitudes are each a sum of fourteen

terms. As we change the non-graviton particles, the individually terms in the amplitude

each behave like MHV amplitudes in that they collect simple multiplicative factors. Per-

forming the sum over the multiplet term-by-term we find a ρ-factor for each term. Just as

in the C234 cut, these are very important as they introduce large inverse powers of t. For

most terms, ρ ∼ 1/t8. Again we pick a sample term to illustrate the process: the other

thirteen terms follow analogously.

We will consider the cut,

C34 = i

∫

dµ
∑

h∈S′

M4

(

(−l1)
h, 3−, 4+, (l2)

−h
)

M6

(

(−l2)
h, 5+, 6+, 1−, 2−, (l1)

−h
)

. (3.26)

The four-point tree amplitude M4

(

(−l1)
h, 3−, 4+, (l2)

−h
)

is given by,

M4

(

(−l1)
h, 3−, 4+, (l2)

−h
)

=
i 〈l23〉7 [l23]

〈34〉 〈3l1〉 〈4l1〉2 〈l24〉 〈l2l1〉

(〈−l13〉
〈l23〉

)4−2h

. (3.27)

For the six-point corner we consider a specific but representative term from the fourteen

in eq (C.2),

M6

(

(−l2)
h, 5+, 6+, 1−, 2−, (l1)

−h
)

|T2

=

(

− i 〈1l2〉 [6l1]

〈6|P26l1 |1]

)4−2h

×

−i 〈2l1〉 〈1|P26l1 |6]8 [5l2]

〈15〉 〈1l2〉 〈5l2〉 〈1|P26l1 |2]〈1|P26l1 |l1]〈5|P26l1 |6]〈l2|P26l1 |6] [26] [2l1] [6l1] t26l1

.

(3.28)

The particle type dependent factors can be extracted and we find relative to the graviton

amplitude,

ρ =
∑

h∈S′

(

− i 〈1l2〉 [6l1]

[6 |P26l1 |1〉
〈−l13〉
〈l23〉

)4−2h

=

(−〈12〉 [26] 〈3l2〉 + 〈13〉 [6|P34|l2〉
[6 |P15−l2 |1〉 〈l23〉

)8

. (3.29)
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Next we rewrite the cut in terms of the loop momenta l2 using the on-shell conditions and

l1 = l2 + k3 + k4. The ρ factor already has the correct form. The remaining contributions

to the cut integral are then,

C ×H(|l2〉) ×
〈2|P34|l2] [5l2]

[3l2] [4l2]〈1|P15−l2 |2]〈5|P15−l2 |6]t15−l2

, (3.30)

where

C =
[34]2

〈34〉2 〈15〉 [26]
, (3.31)

and

H(|l2〉) =
(−〈12〉 [26] 〈3l2〉 + 〈13〉 [6|P34|l2〉)8

〈l23〉 〈l24〉 〈1l2〉 〈5l2〉 [6|P34|l2〉 [2|P34|l2〉 〈l2|P15|6] 〈1|P26P34|l2〉
. (3.32)

We now replace l2 by l2 = t ` = t λλ̃ and do the t-integration. With the defini-

tions, 〈`|Q1|`] = 〈`|P34|`] 〈1|P15|2]− s34 〈`1〉 [2`], 〈`|Q2|`] = 〈`|P34|`] 〈5|P15|6]− s34 〈`5〉 [6`],

〈`|Q3|`] = 〈`|s15P34 − s34P15|`], we can rewrite the cut as,

− C × s34 ×H(|l〉) × 〈`|P34|`] ×
i 〈2|P34|`] [5`]

[3`] [4`] 〈`|Q1|`] 〈`|Q2|`] 〈`|Q3|`]
. (3.33)

It is important to notice that the ρ-factor contributes 〈`|P34|`]8, while the product of the

graviton amplitudes gives rise to 1/ 〈`|P34|`]5, with a further factor of 1/ 〈`|P34|`]2 coming

from the integration measure. The powers of 〈`|P34|`] are important in that they indicate

the type of integral functions that are present. For the above term with only single poles

in the denominator, bubbles can only arise from terms carrying a factor of 1/ 〈`|P34|`]2.
We therefore conclude that no bubbles are present.

By considering all distinct two-particle cuts of the six-point one-loop NMHV amplitude

we have shown that the amplitude receives no contributions from bubble integral functions.

3.4 Triple cuts

Having verified that no one or two-mass triangles or bubble integral functions are present

in the amplitude, we now consider the three-mass triangle integral function. These have no

IR singularities and so the previous arguments have nothing to say regarding their absence

or presence. In this section we illustrate how the coefficients of three-mass triangles can be

evaluated by numerically integrating triple cuts of amplitudes. Note that MHV amplitudes

do not contain triple cuts for any gravity theory so this is a previously untested class of

functions.

Consider a physical triple cut in an amplitude where all three corners are massive,

•

•

•

•
l2

l3 l1

– 13 –
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C3 =
∑

hi∈S′

∫

d4l1δ(l
2
1)δ(l

2
2)δ(l

2
3)M

(

(l1)
h1 , im, · · · ij , (−l2)

−h2
)

× M
(

(l2)
h2 , ij+1, · · · il, (−l3)

−h3
)

× M
(

(l3)
h3, il+1, · · · im−1, (−l1)

−h1
)

,

(3.34)

where the summation is over all possible intermediate states. As the momentum invariants,

K1 = kim + kim+1 + · · · kij etc, are all non-null, there exist kinematic regimes is which the

integration has non-vanishing support for real loop momentum. In such cases the remaining

one dimensional integral can readily be evaluated numerically. In the generic expression of

an amplitude the only integral functions contributing to the triple cut are box functions

and the specific three mass triangle for the cut,

C3 =
∑

i

ci(I
i
4)triple−cut + d3m(I3m

3 )triple−cut . (3.35)

The box functions which can contribute are the two-mass-hard, three-mass and four mass.

This equation can be inverted to express the coefficient d3m in terms of C3 and the box-

coefficients.

For the six-point case the cut,

C3 =
∑

hi∈S′

∫

d4liδ(l
2
1)δ(l

2
2)δ(l

2
3)M4

(

(l1)
h1 , 1, 2, (−l2)

−h2
)

× M4

(

(l2)
h2 , 3, 4, (−l3)

−h3
)

× M4

(

(l3)
h3 , 5, 6, (−l1)

−h1
)

,

(3.36)

only receives contributions from two-mass-hard boxes, such as I2m h
4 [2, {3, 4}, {5, 6}, 1], and

the three mass triangle. The triple cut of a two-mass hard box is,

(I2m h
4 )triple−cut =

∫

d4p

p2(p − k2)2(p − k2 − K3)2(p + k1)2
∣

∣

cut

=

∫

d4pδ((p − k2)
2)δ((p − k2 − K3)

2)δ((p + k1)
2)

p2

=
π

2(k1 + k2)2(k2 + K3)2
,

(3.37)

while the triple cut of the three mass triangle is,

(I3m
3 )triple−cut =

∫

d4p

p2(p − K1)2(p + K3)2
∣

∣

cut

=

∫

d4pδ(p2)δ((p + K3)
2)δ((p − K1)

2) =
π

2
√

∆3

=
π

2
√

(K2
1 )2 + (K2

2 )2 + (K2
3 )2 − 2(K2

1K2
2 + K2

1K2
3 + K2

2K2
3 )

.

(3.38)

Thus we see that,

π

2
√

∆3
d3m
3 = C3 −

π

2

∑

i

c2m h,i

(k1 + k2)2(k2 + K3)2
. (3.39)
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The integral in C3 is well behaved and can be determined numerically from the tree

amplitudes. Using the box-coefficients for the six-point amplitude [17] we have verified

numerically that,
d3m
3 [{1−, 2−}, {3−, 4+}, {5+, 6+}] = 0 ,

d3m
3 [{1−, 4+}, {2−, 5+}, {3−, 6+}] = 0 .

(3.40)

The first zero is true for any (massless) gravity theory whilst the second is true only for

N = 8 supergravity.

For the seven-point amplitude we must also include three-mass boxes in the triple cut.

Using the seven-point box coefficients given in the appendix we have verified that three

mass triangles are absent in the seven-point NMHV amplitude. Explicitly,

d3m
3 [{1−, 2−}, {3−, 4+}, {5+, 6+, 7+}] = 0 ,

d3m
3 [{1−, 2−}, {3−, 4+, 5+}, {6+, 7+}] = 0 ,

d3m
3 [{1−, 2−, 4+}, {3−, 5+}, {6+, 7+}] = 0 ,

d3m
3 [{1−, 4+}, {2−, 5+}, {3−, 6+, 7+}] = 0 ,

(3.41)

with the first three coefficients vanishing for any matter content but the last only zero for

N = 8 supergravity.

3.5 Factorisation

The unitarity constraints of the previous sections are sufficient to show the absence of

integral functions involving logarithms. This is sufficient to prove the no-triangle hypothesis

for six or fewer gravitons. At seven-point and beyond, the amplitude may, in principle,

contain rational terms which do not appear in the four-dimensional cuts. Unitarity can be

used to obtain these [45 – 48] but one must evaluate the cuts fully in 4 − 2ε dimensions.

Recently, there has been much progress in determining the rational parts of QCD one-

loop amplitudes based on the physical factorisations of the amplitudes [49 – 51]. Gravity

amplitudes are also heavily constrained by factorisation so the absence of terms other than

boxes for six or fewer legs makes it difficult to envisage their presence at higher points.

More explicitly, consider the multi-particle factorisations. From general field theory

considerations, amplitudes must factorise (up to subtleties having to do with infrared

singularities) on multi-particle poles. For Kµ ≡ kµ
i + . . . + kµ

i+r+1 the amplitude factorises

when K becomes on shell. Specifically, as K2 → 0 the factorisation properties of one-loop

massless amplitudes are described by [52],

M1-loop
n

K2→0−→
∑

λ=±

[

M1-loop
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
M tree

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

+M tree
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
M1-loop

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

+M tree
r+1

(

ki, . . . , ki+r−1,K
λ
) i

K2
M tree

n−r+1

(

(−K)−λ, ki+r, . . . , ki−1

)

r̂Γ Fn

(

K2; k1, . . . , kn

)

]

,

(3.42)

where the one-loop “factorisation function” Fn is helicity independent.
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Gravity one-loop amplitudes also have soft and collinear factorisations. In ref. [16] it

was shown that these have a universal collinear behaviour given by,

M1−loop
n (. . . , aλa , bλb , . . .)

a‖b−→
∑

λ

Splitgravity(z, aλa , bλb)×M1−loop
n−1 (. . . , P λ, . . .) , (3.43)

when ka and kb are collinear. The pure graviton splitting amplitudes are,

Splitgravity
+(z, a+, b+) = 0 ,

Splitgravity
−(z, a+, b+) = − 1

z(1 − z)

[a b]

〈a b〉 ,

Splitgravity
+(z, a−, b+) = − z3

1 − z

[a b]

〈a b〉 .

(3.44)

There is also a universal soft behaviour given by,

M1−loop
n (. . . , a, s±, b, . . .)

ks→0−→ Sgravity(s±) × M1−loop
n−1 (. . . , a, b, . . .) , (3.45)

when ks becomes soft. For the limit kn → 0 in M tree
n (1, 2, . . . , n), the gravitational soft

factor (for positive helicity) is,

Sn ≡ Sgravity(n+) =
−1

〈1n〉 〈n, n − 1〉
n−2
∑

i=2

〈1 i〉 〈i, n − 1〉 [i n]

〈i n〉 . (3.46)

Note that the collinear behaviour is only a “phase singularity” for real momenta [16],

however it should be regarded as a genuine singularity when using complex momenta.

These factorisations place constraints on the rational terms Rn. Since Rn = 0 for

n ≤ 6 the natural solution is Rn = 0 for all n. For QCD the factorisation constraints have

been turned into recursion relations for the rational terms [49, 50]. If this bootstrap also

applies to gravity amplitudes then we would be able to immediately deduce that Rn = 0 for

N = 8 amplitudes. At present a direct calculation of the rational terms beyond six-points

seems unfeasible although there has been recent progress in producing algorithms focused

on computing the rational terms in six-point QCD amplitudes [53, 54].

4. Checking Bubble-cuts by large-z shifts

In this section we look at a different way to test for bubble integral functions in the two-

particle cuts. This approach is based on the scaling behaviour of amplitudes under specific

shifts of the loop momenta.

Starting from equations (3.9) and (3.10), lifting the integral implies,

M tree
(

(−l1)
−, i, · · · , j, (l2)

−
)

× M tree
(

(−l2)
+, j + 1, · · · , i − 1, (l1)

+
)

=
∑

i∈C′

ci

(l1 − Ki,4)2(l2 − Ki,2)2
+

∑

j∈D′

dj

(l1 − Kj,3)2
+ ek′ + D(l1, l2) .

(4.1)
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Here D(l1, l2) is a total derivative,
∫

dLIPS(−l1, l2)D(l1, l2) = 0, which may or may not be

present. Note that in the above a number of boxes and triangles may contribute but only

one bubble. Let us consider (4.1) under the shift of the two-cut legs,

λl1 −→ λl1 + z λl2 , λ̃l2 −→ λ̃l2 − z λ̃l1 . (4.2)

This shift does not change the coefficients but it does enter the propagator terms (and

possibly the D(l1, l2)). In the large-z limit the propagators will vanish as 1/z leaving

behind the bubble coefficient ek′ . This suggests a test for bubble terms: if,

lim
z→∞

M tree
(

(−l1)
−h1 , i, · · · , j, (l2)

h2
)

×M tree
(

(−l2)
−h2 , j +1, · · · , i−1, (l1)

h1
)

−→ 0 , (4.3)

in the large-z limit, then,

ek′ = 0 , (4.4)

under the assumption that the total derivative vanishes at infinity. In the following section

we discuss criteria for when this test may be used. This test is particularly useful as in

many cases it follows from the general behaviour of gravity tree amplitudes and may be

tested numerically when the tree amplitudes are known.

4.1 Relation to large t behaviour

A key step is to relate the large z behaviour to the large t behaviour of the cut parameterised

as in the previous section. In that section, following [30, 38], we discussed how the integral

functions that a given term in a unitarity cut contributes to are determined by the power,

n, of 1/(Paȧλ
aλ̃ȧ)n. A term in the cut integral (3.13) can be written as a rational expression

in holomorphic and anti-holomorphic spinors λa and λ̃ȧ respectively (recall these spinors

are NOT the same as the λli but are related via l1 = tλλ̃),

∫ 〈λdλ〉
[

λ̃ dλ̃
]

(Paȧλaλ̃ȧ)n

na1...aj ,ȧ1...ȧk
λa1 · · · λaj λ̃ȧ1 · · · λ̃ȧk

db1...bl,ḃ1...ḃm
λb1 · · · λbl λ̃ḃ1 · · · λ̃ḃm

, (4.5)

where the tensors na1...aj ,ȧ1...ȧk
and db1...bl,ḃ1...ḃm

contain no factors of (Paȧλ
aλ̃ȧ).

Since the integrand must carry spinor weight −2 in λ and λ̃, the counters j, k, l,m

and n obey j − l − n = −2 and k − m − n = −2. The na1...ȧk
are non-vanishing for the

contractions,

na1...aj

ȧ1...ȧkλa1 · · · λaj
(

λb1Pb1ȧ1

)

· · ·
(

λbkPbk ȧk

)

6= 0 , (4.6)

and similarly for db1...ḃm
. This can always be achieved: were the above contraction to

vanish for all values of λ, then the spinor obtained by contracting all but one index has to

be parallel to λbkPbk

ȧk , that is,

na1...aj

ȧ1...ȧkλa1 · · · λaj
(

λb1Pb1ȧ1) · · ·
(

λbk−1Pbk−1ȧk−1

)

= n′(λ, Pλ)
(

λbkPbk

ȧk
)

, (4.7)

with n′ a tensor of lower rank in λ and λ̃. We would then be able to pull out a power of

(Paȧλ
aλ̃ȧ) and write the contraction of n as,

n(λ, λ̃) = n′(λ, λ̃) (Paȧλ
aλ̃ȧ), (4.8)
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contrary to our condition that no such factors exist.

The central observation is that the power n of 1/(Paȧλaλ̃ȧ)n is related to the leading

power in large-z of λli . The shift in (4.2) translates into a shift on the λ and λ̃ of,

λa −→ λa , λ̃ȧ → λ̃ȧ + z λaPaȧ . (4.9)

The terms (Paȧλ
aλ̃ȧ) are invariant under the shift, so the leading term at large-z is given

by,

zk−m 1

(Paȧλaλ̃ȧ)n
× n(λ, Pλ)

d(λ, Pλ)
. (4.10)

Using n = (k − m) + 2 one finds that the large-z scaling is,

∼ zn−2, (4.11)

for a term with a 1/(Paȧλ
aλ̃ȧ)n factor. Consequently, if the product of the two tree ampli-

tudes vanishes as z −→ ∞ then this product can only be composed of terms with n ≤ 1.

These terms do not contribute to bubble functions and hence the coefficient of the bubble

corresponding to this cut must vanish. 4

4.2 Using the large-z test for gravity amplitudes

In this section we apply the test of the previous section to the two-particle cuts for graviton

scattering in N = 8 supergravity. We can use the behaviour of the gravity amplitudes under

the shift (4.2) to determine the behaviour of the cut. We will need to consider two types

of cut: singlet cuts where only graviton amplitudes are needed and non-singlet cuts where

amplitudes involving other states in the supergravity multiplet contribute.

It is useful to briefly review the known results for the large-z behaviour of gravity

amplitudes under the shifts,

λi → λi + z λj , λ̃j → λ̃j − zλ̃i. (4.12)

The scaling of a given tree amplitude depends on the helicity of the two shifted legs and

the helicity of the scattering gravitons. For MHV-amplitudes there is an explicit all-n

representation of the tree amplitudes [55]. This can be used to show that [40 – 42],

(hi, hj) =(+,+), (−,−), (+,−) : M tree|z−→∞ ∼ 1

z2
,

(hi, hj) =(−,+) : M tree|z−→∞ ∼ z6.
(4.13)

Slightly more surprisingly this behaviour extends to NMHV amplitudes also - at least up

to seven points where we have checked the result explicitly. It is tempting to conjecture

that this is true for all graviton tree amplitudes. We only need the behaviour up to seven

points to test for bubbles in the six and seven point amplitudes.

4Note that since there is only a single bubble in each cut, there is no possibility of cancellation. It is not

uncommon for cancellations to occur amongst the box functions appearing in a cut. The propagators of a

single box vanish as 1/z2, however, as in many of the cases we consider, the leading terms cancel amongst

the boxes leaving a 1/z4 behaviour as z −→ ∞.
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We first consider the MHV case for arbitrary n. The singlet cuts are of the form,

M tree
(

(l1)
+, 1−, 2−, 3+, · · · r+, (l2)

+) × M tree
(

(l1)
−, (r + 1)+, · · · n+, (l2)

−). (4.14)

When we shift this we find that each tree shifts as 1/z2, so the product behaves as 1/z4

at large-z and we can deduce that the bubble integral function I2(K1...r) has vanishing

coefficient. The non-singlet cut is more involved,
∑

h

M tree
(

(−l1)
−h, 2−, 3+, · · · r+, (l2)

h)×M tree
(

(−l2)
−h, (r + 1)+, · · · n+, 1−, (l1)

h
)

=

M tree
(

(−l1)
−, 2−, 3+, · · · r+, (l2)

+
)

× M tree
(

(−l2)
−, (r + 1)+, · · · n+, 1−, (l1)

+
)

×
∑

h∈S′

(〈2 l1〉 〈1 l2〉
〈2 l2〉 〈1 l1〉

)2h−4

= ρ × M tree
(

(−l1)
−, 2−, 3+, · · · r+, (l2)

+
)

× M tree
(

(−l2)
−, (r + 1)+, · · ·n+, 1−, (l1)

+
)

,

(4.15)

where,

ρ =

(〈2 l2〉 〈1 l1〉 − 〈2 l1〉 〈1 l2〉
〈2 l1〉 〈1 l2〉

)8

=

(〈l1 l2〉 〈1 2〉
〈2 l1〉 〈1 l2〉

)8

. (4.16)

Under the shift the amplitudes scale as,

M tree
(

(−l1)
−, 2−, 3+, · · · r+, (l2)

+
)

∼ z6 ,

M tree
(

(−l2)
−, (r + 1)+, · · · n+, 1−, (l1)

+
)

∼ 1/z2 ,
(4.17)

however the ρ-factor scales, noting that 〈l1 l2〉 is unshifted, as,

ρ ∼ 1

z8
, (4.18)

and we find the non-singlet cuts scale as 1/z4, exactly as in the singlet case. Within the

sum over the multiplet (4.15) the product of tree amplitudes scales as z4 for any given

state and the simplification only arises when the sum over the entire N = 8 multiplet is

performed.

We will now discuss the possible cuts of the six and seven-point NMHV amplitudes.

For any singlet cut,

M tree
(

(−l1)
−, . . . , (l2)

−
)

× M tree
(

(−l2)
+, . . . , (l1)

+
)

, (4.19)

the trees both vanish as 1/z2 under the shift (4.12) and we deduce that bubble integral

functions are absent from these cuts. Thus bubbles corresponding to singlet cuts are absent

up to seven-points.

The non-singlet cuts are more involved. For the six-point amplitude,

M(1−, 2−, 3−, 4+, 5+, 6+) there are two types of cut corresponding to the cuts C234 and

C34. For the C234 cut the amplitudes are a product of an MHV and a MHV . Summing

over the multiplet gives an overall ρ factor just as in the MHV case and we deduce the

coefficient of this bubble function is absent. The C34 cut is given by,
∑

h∈S′

M tree
(

(−l1)
−h, 3−, 4+, (l2)

h
)

× M tree
(

(−l2)
−h, 1−, 2−, 5+, 6+, (l1)

h
)

. (4.20)
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The amplitude involving a state of helicity h behaves as,

M tree
(

(−l1)
−h, 1−, 2−, 5+, 6+, (l2)

h
)

∼ z2h+2 , (4.21)

which is a natural refinement of (4.13) and can be checked using the form of the amplitude

in appendix C. Thus the product of the two tree amplitudes in the cut (which will have

states of ±h) will always behave as z4 and the corresponding scattering amplitude will

contain bubble functions (or boundary terms). By explicit computation it can be seen that

after including all the states from the N = 8 supergravity multiplet we have,

∑

N=8multiplet

M tree
(

(−l1)
−h, 3−, 4+, (l2)

h
)

× M tree
(

(−l2)
−h, 1−, 2−, 5+, 6+, (l1)

h
)

|z−→∞ −→ 0 ,

(4.22)

and the bubble functions drop out. This calculation shows how the sum over the multiplet

leads to the absence of bubble functions in the six-point NMHV amplitude even though

they are present in the contribution from any single state in the multiplet. For the seven-

point amplitude M(1−, 2−, 3−, 4+, 5+, 6+, 7+) there are three types of cut: C234, C345 and

C34. Of these, the large z behaviour of C234 and C345 can be checked using the six-point

amplitudes verifying the absence of these bubbles.

5. Consequences and conclusions

In this paper we have given further evidence that the one-loop perturbative expansion for

N = 8 supergravity is much closer to that of N = 4 super Yang Mills than expected

from power counting arguments. We argue that the one-loop amplitudes are composed

entirely of box integral functions and contain “no-triangle” (or bubble or rational) integral

functions. We have provided evidence rather than a proof for this “no-triangle hypothesis”,

but the evidence amounts to a proof for the six-point amplitudes. The evidence for n-

point amplitudes with n ≥ 7 based on unitarity, factorisation and IR behaviour is, for us,

compelling.

The cancellation we observe is not “diagram-by-diagram” - at least not in any com-

putational framework we are aware of. Individual diagrams appear to have loop momen-

tum polynomials of degree 2(r − 4) and simplification only occurs when the diagrams are

summed. The simplification observed is quite dramatic: to yield only boxes the simplifi-

cation would be equivalent to a cancellation between terms such that the leading (r − 4)

terms in the loop momentum polynomials cancel.

The “no-triangle hypothesis” applies strictly to one-loop amplitudes only. However we

expect it to have consequences for higher loops. For N = 8 supergravity in D = 4 the four

point amplitude is expected to diverge at five loops [4]. This argument is based on power

counting and the known symmetries of the theory [56]. Specifically, the argument attempts

to estimate the power of the loop momentum integral of individual higher loop diagrams

and finds that they generically have twice the power of the equivalent Yang-Mills diagram.

Cancellations between diagrams analogous to those occuring at one-loop would lead to a

softer UV behaviour than this prediction with the theory possibly even being finite.
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Presumably there is a symmetry underlying this simplification. We are not aware of

any potential candidates for this symmetry. Although examining on-shell amplitudes has

many advantages, the nature of the underlying symmetry is obscure in the amplitudes.

The symmetries implied by the twistor duality [36] are one potential source, although

originally the duality seemed to involve super-conformal rather than Einstein gravity [57].

Recently twistor strings involving Einstein gravity have been constructed [58] and it would

be interesting to explore these for potential symmetries. If N = 8 were “weak-weak” dual

to a UV finite string theory then obviously the finiteness of N = 8 supergravity would

follow.
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A. Seven-point amplitude

The seven-point NMHV amplitude M7(1
−, 2−, 3−, 4+, 5+, 6+, 7+) can be expressed as a

sum of scalar boxes together with rational coefficients;

M1-loop =
∑

a

caI
a
4 . (A.1)

The scalar boxes can be of four types, three mass, two-mass-hard, two-mass-easy and one

mass shown below with our choice of labelling.

ab

c d
e

f

g

ga

b c d e f

g
ab

c

d e
f

g
a

b

c d
e

f

The coefficients of the box-functions can be obtained by unitarity [33, 34]. Recently,

it was observed that the box-coefficients can be efficiently obtained from the quadruple

cut [35],

l1

l3

l2 l4
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which yields the coefficient of the corresponding integral function,

c =
1

2

∑

hi∈S

(

M tree
(

(−`1)
−h1 , i1, . . . , i2, (`2)

h2
)

× M tree
(

(−`2)
−h2 , i3, . . . , i4, (`3)

h3
)

× M tree
(

(−`3)
−h3 , i5, . . . , i6, (`4)

h4
)

× M tree
(

(−`4)
−h4 , i7, . . . , i8, (`1)

h1
)

)

.

(A.2)

In this expression the sum is over all possible states of the N = 8 multiplet and all

possible helicity configurations for which the four tree amplitudes are non-zero. The four

cut momenta are all on-shell, l2i = 0. If the four tree amplitudes have four or more legs then

this is solved for real momenta whereas if a corner has only three legs then the solution

involves complex momenta. Alternately the box-coefficients of N = 8 can be obtained

from those of N = 4 super Yang-Mills where for example, with the above labelling, the

coefficients of the three-mass boxes are related by,

c
[a,{b,c},{d,e},{f,g}]
N=8 = 2sbcsdesfg×c

[a,{b,c},{d,e},{f,g}]
N=4 × c

[a,{c,b},{e,d},{g,f}]
N=4 . (A.3)

To implement the quadruple cuts requires a knowledge of the tree amplitudes up to

and including six-points, where two particles are states other than gravitons. The three,

four and five points amplitudes are all MHV or MHV amplitudes and relatively simple.

For MHV amplitudes the amplitude with n − 2 gravitons and two non-graviton particles

are related to the MHV amplitude by,

M(1−h , 2−, 3+, · · · , (n − 1)+, n+
h ) =

(〈2n〉
〈2 1〉

)2h−4

M(1−, 2−, 3+, · · · , (n − 1)+, n+). (A.4)

For the six-point corners the tree may be MHV or NMHV. The six-graviton NMHV tree am-

plitudes were computed recently [41, 17]. To complete the calculation of the box-coefficients

we also need the six-point amplitudes with two non-gravitons. These are presented in ap-

pendix C.

A.1 Definitions

The coefficients of the boxes are expressed using spinor products. We use the notation

〈j l〉 ≡ 〈j−|l+〉, [j l] ≡ 〈j+|l−〉, with |i±〉 being massless Weyl spinors with momentum ki

and chirality ± [59]. The spinor products are related to momentum invariants by 〈i j〉 [j i] =

2ki · kj ≡ sij . As in twistor-space studies we use the notation,

λi = |i+〉 , λ̃i = |i−〉 . (A.5)

We also define spinor strings,

[k|Ki...j|l〉 ≡ 〈k+|/Ki...j|l+〉 ≡ 〈l−|/Ki...j|k−〉 ≡ 〈l|Ki...j |k] ≡
j

∑

a=i

[k a] 〈a l〉 ,

〈k|Ki...jKm...n|l〉 ≡ 〈k−|/Ki...j/Km...n|l+〉 =

j
∑

a=i

n
∑

b=m

〈k a〉 [a b] 〈b l〉 ,

[k|Ki...jKm...n|l] ≡ 〈k+|/Ki...j/Km...n|l−〉 ≡
j

∑

a=i

n
∑

b=m

[k a] 〈a b〉 [b l] ,

(A.6)
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etc. We will often use the momentum invariants sij = (ki + kj)
2 and tijk = (ki + kj + kk)

2.

A.2 Three mass boxes

The three mass boxes have one graviton attached to one corner and two gravitons to each

of the others. The three-point corner is MHV while the four-point corners are MHV. This

means that all four corners are relatively simple and that different helicity configurations

are also relatively simply related. In the case of L6 there is a summation over the full

N = 8 multiplet running in the loop. We get,

c[a+, {b+, c+}, {d−, e+}, {f−, g−}] = L0,

c[a+, {b+, c+}, {d−, e−}, {f−, g+}] = L1 =

( 〈f |KdeKbc|a〉
[e|Kbc|a〉 〈f g〉

)8

L0,

c[a+, {b+, c−}, {d+, e+}, {f−, g−}] = L2 =

(〈a c〉 [d e]

[e|Kbc|a〉

)8

L0

c[a−, {b+, c+}, {d−, e−}, {f+, g+}] = L3 =

( 〈a|KbcKfg|a〉
[e|Kbc|a〉 〈f g〉

)8

L0,

c[a−, {b−, c−}, {d+, e+}, {f+, g+}] = 0,

c[a−, {b+, c−}, {d+, e+}, {f+, g−}] = L4 =

( 〈a c〉 〈a g〉 [d e]

[e|Kbc|a〉 〈f g〉

)8

L0,

c[a−, {b−, c+}, {d−, e+}, {f+, g+}] = L5 =

(

[e|Kfg |a〉 〈a b〉
[e|Kbc|a〉 〈f g〉

)8

L0,

c[a+, {b−, c+}, {d−, e+}, {f−, g+}] = L6

=

(〈b a〉 [e|Kfg |a〉〈f |KdeKbc, a] − 〈f a〉 [e|Kbc|a〉〈b|KdeKfg, a]

[e|Kbc|a〉 〈f g〉 〈a|KbcKde|a〉

)8

L0,

(A.7)

where,

L
0 = (A.1)

= −sbcsdesfg 〈g f〉6 [e|Kbc|a〉8(tabctfga − sbcsfg)
2

2 [d e]2 〈b c〉2
Q

x=b,c,g,f 〈ax〉
Q

y=d,e [y|Kfg|a〉[y|Kbc|a〉
Q

z=b,c〈z|KdeKfg|a〉
Q

w=f,g 〈w|KdeKbc|a〉 .

A.3 Two mass hard boxes

The two mass hard boxes have two adjacent three-point corners, a four-point corner and

a five-point corner. The four- and five-point corners are MHV and of the two three-point

corners one is MHV and the other is MHV . The two ways of assigning these give rise to

the Gi and Hi terms below. Because all corners are either MHV or MHV , the different

helicity configurations are simply related. We get,
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c[a−, {b−, c−}, {d+, e+, f+}, g+] = G0,

c[a−, {b−, c+}, {d−, e+, f+}, g+] = G1 + H1 =

(

[c|Kabc|d〉
tabc

)8

G0 +

(〈a b〉 [g|Kabc|d〉
〈b c〉 tdef

)8

H0,

c[a−, {b+, c+}, {d−, e−, f+}, g+] = G2 + H2 =

(

[b c] 〈d e〉
tabc

)8

G0 +

(〈d e〉 [g|Kabc|d〉
〈b c〉 tdef

)8

H0,

c[a+, {b+, c+}, {d−, e−, f−}, g+] = 0,

c[a+, {b−, c−}, {d−, e+, f+}, g+] = G3 + H3 =

(

[a|Kabc|d〉
tabc

)8

G0 +

(

[g|Kabc|d〉
tdef

)8

H0,

c[a+, {b−, c+}, {d−, e−, f+}, g+] = G4 + H4 =

(

[a c] 〈d e〉
tabc

)8

G0 +

(〈d e〉 [g|Kabc|b〉
〈b c〉 tdef

)8

H0,

c[a+, {b−, c−}, {d+, e+, f+}, g−] = G5 + H5 =

(

[a|Kabc|g〉
tabc

)8

G0 + H0,

c[a+, {b−, c+}, {d−, e+, f+}, g−] = G6 + H6 =

(〈d g〉 [a b]

tabc

)8

G0 +

(〈d|KdefKabc|b〉
〈b c〉 tdef

)8

H0,

c[a+, {b+, c+}, {d−, e−, f+}, g−] = G7 + H7 = 0.G0 +

(

tabc 〈d e〉
〈b c〉 tdef

)8

H0,

c[a−, {b−, c+}, {d+, e+, f+}, g−] = G8 + H8 =

(

[c|Kabc|g〉
tabc

)8

G0 +

(〈a b〉
〈c b〉

)8

H0,

c[a−, {b+, c+}, {d−, e+, f+}, g−] = G9 + H9 =

(〈g d〉 [b c]

tabc

)8

G0 +

(〈a|KbcKdef |d〉
〈b c〉 tdef

)8

H0,

(A.8)

where,

G0 =
s2
ag 〈b c〉 t8abc([d e] 〈e f〉 [f |Kabc|g〉[a|Kabc|d〉 − 〈d e〉 [e f ] [d|Kabc|g〉[a|Kabc|f〉)
2N̄ (a, b, c)N(d, e, f, g)[c|Kabc |g〉[b|Kabc|g〉[a|Kabc|d〉[a|Kabc|e〉[a|Kabc|f〉

, (A.9)

and,

H0 =
s2
ags

7
bct

7
def (〈d e〉 [e f ] 〈f |Kabc|g]〈a|Kabc|d] − [d e] 〈e f〉 〈d|Kabc|g]〈a|Kabc|f ])

2 [b c]2 N(d, e, f)
Q

j=b,c [j|Kabc|a〉[j|KbcKdef |g]
Q

i=d,e,f 〈i|Kdef Kbc|a〉[g|Kabc|i〉
. (A.10)

Here, N(a, b, · · ·m) =
∏

i<j,i,j∈{a,b,···m} 〈i j〉 and N̄(a, b, · · ·m) =
∏

i<j,i,j∈{a,b,···m} [i j]

A.4 Two mass easy boxes

The two mass easy boxes have two opposite MHV three-point corners, an MHV four-point

corner and a MHV five-point corner. Again, the terms are relatively simple and related.

They are,

– 24 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

c[{a−, b−, c−}, d+, {e+, f+}, g+] ≡W0,

c[{a−, b−, c+}, d+, {e+, f−}, g+] ≡W1 =

(

[c|Kabc|f〉
tabc

)8

W0,

c[{a−, b−, c+}, d+, {e+, f+}, g−] ≡W2 =

(

[c|Kabc|g〉
tabc

)8

W0,

c[{a−, b+, c+}, d+, {e−, f−}, g+] ≡W3 =

(〈e f〉 [b c]

tabc

)8

W0,

c[{a−, b+, c+}, d+, {e−, f+}, g−] ≡W4 =

(〈e g〉 [b c]

tabc

)8

W0,

c[{a−, b+, c+}, d−, {e+, f+}, g−] ≡W5 =

(〈d g〉 [b c]

tabc

)8

W0

c[{a+, b+, c+}, d−, {e−, f−}, g+] =0,

c[{a+, b+, c+}, d−, {e−, f+}, g−] =0,

(A.11)

where,

W0 ≡ ([g|Kabc|d〉[d|Kabc|g〉)2 [e f ]2 (tabc)
7(〈g|Kabckakbkc|d〉 − 〈g|Kabckckbka|d〉)

2 [a b] [a c] [b c]
∏

x=e,f 〈x d〉 〈x g〉∏

x=a,b,c[x|Kabc|g〉[x|Kabc|d〉sef
. (A.12)

A.5 One mass boxes

The one mass boxes have three three-point corners and one massive six-point corner. For

each external helicity configuration there are (one or) two internal helicity configurations

which cause the massive corner to be either MHV or NMHV. These give rise to the Fi and

Pi terms, respectively. Taking the second external configuration below as an example, F1

and P1 come from,

a−b−

c+ d− e+

f+

g+F1:
−

+
−+

+

−
− +

a−b−

c+ d− e+

f+

g+P1:
−

+
+−

+

−
+ −

The Fi terms have the same simplifications as noted above, while the calculational approach
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for the resulting Pi terms is discussed below.

c[a−, b−, c−, {d+, e+, f+, g+}] =F0 + 0,

c[a−, b−, c+, {d−, e+, f+, g+}] =F1 + P1 =

(

[c|Kabc|d〉
tabc

)8

F0 + P1,

c[a−, b+, c−, {d−, e+, f+, g+}] =F2 + P2 =

(

[b c] 〈d b〉
[a c] 〈a b〉

)8

F0 + P2,

c[a−, b+, c+, {d−, e−, f+, g+}] =F3 + P3 =

(〈d e〉 [b c]〉
tabc

)8

F0 + P3,

c[a+, b−, c+, {d−, e−, f+, g+}] =F4 + P4 =

(〈d e〉 [a c]〉
tabc

)8

F0 + P4,

c[a+, b+, c+, {d−, e−, f−, g+}] =0 + P5,

(A.13)

where,

F0 =
t6abc 〈a b〉2 〈c b〉2 [a g] [d e] [f |KdeKabc|a]

4 [a c] 〈d e〉 〈e f〉 〈d f〉 〈f g〉 [c|Kabc|g〉
∏

x=d,e,g[a|Kabc|x〉
+ Perm(d, e, f, g) . (A.14)

For P1 we use the form of the NMHV six-point tree amplitude in appendix C. We

then get,

P
[a,b,c,d,e,f,g]
1 =

(

T 1
1

)

+
(

T 2
1 + T 3

1 + T 4
1 + T 5

1

)

|{(efg)+(feg)+(gef)}, (A.15)

with,

T 1
1 = M0[a, b, c, d, e, f, g]

≡
s2
ab 〈c d〉 〈a b〉6 [b c]2 t7efg

(

[d|Kefg|e〉 [e f ] 〈f g〉 [g|Kabc|c〉 − [d|Kefg|g〉 [g f ] 〈f e〉 [e|Kabc|c〉
)

2t2abc 〈a c〉 [d|Kabc|a〉 〈e f〉 〈f g〉 〈e g〉∏

x=e,f,g〈c|KabcKefg|x〉[d|Kefg |x〉
,

T 2
1 =

(

[e|Kdfg |d〉
tdfg

)8

M0[a, b, c, e, d, f, g],

T 3
1 =

s2
ab 〈a b〉6 [b c]2 [f g]8 〈c|Kabc|e]

(

〈e|Kdfg |d] 〈d f〉 [f g] 〈g c〉 − 〈e|Kdfg |g] 〈g f〉 [f d] 〈d c〉
)

2tdfg 〈a c〉 〈a e〉 [d f ] [f g] [d g]
∏

x=d,f,g[x|Kefg|c〉[x|Kefg|e〉
,

T 4
1 =

−[e|Kfg|c〉7 [b c]2 〈a b〉6 sdesfgs
2
ab

2〈c|KfgKade|a〉 〈a c〉 [d e]2
Q

y=d,e〈c|Kabc|y] 〈f g〉2 〈g c〉 〈f c〉
Q

x=f,g 〈c|KabcKde|x〉[d|Kfg |c〉
,

T 5
1 =

〈a b〉6 [b c]2 〈c d〉7 [f g]6 sdesfgtabcs
2
ab

2 〈a c〉 〈c|KabfgKafg|a〉 〈d e〉2 〈c e〉∏

y=f,g[y|Kabc|c〉[y|Kde|c〉
∏

x=d,e〈x|KfgKabc|c〉
.

(A.16)

P1 and P2 are related by,

P
[a,b,c,d,e,f,g]
2 =

(〈ca〉
〈bc〉

)8

P
[a,b,c,d,e,f,g]
1 . (A.17)
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P3 is obtained by using the NMHV amplitude of Cachazo and Svrček [41]. We then

get,

P
[a,b,c,d,e,f,g]
3 =

13
∑

i=1

T i
3 , (A.18)

where,

T 1
3 =

[ab]2[bc]2〈de〉〈a|Kde|f ]7
(

〈a|Kde|f ]〈g|Kef |d]〈c|Kab|g] − 〈c|Kab|d][fg]〈ga〉tdef

)

2〈ag〉[de][ef ]2〈gc〉tdef 〈a|Kef |d]
Q

x=c,g

Q

y=d,f 〈x|Kdef |y]
,

T 2
3 =

[ab]2[bc]2〈ea〉
(

〈da〉〈c|Kab |f ] + 〈ca〉〈de〉[ef ]
)7

2〈ca〉〈dg〉〈dc〉〈c|Kab |e][ef ]2〈gc〉〈c|Kdg |f ]

×
(

〈da〉〈c|Kab|f ] + 〈ca〉〈de〉[ef ]
)

〈c|KabKef |g〉[gd] − 〈c|Kab|d][fg]〈gd〉〈a|Kef Kdg|c〉
〈a|KefKdg|c〉〈c|KabKef |d〉

Q

x=c,g 〈c|KabKef |x〉
(

〈ga〉〈c|Kab |f ] + 〈ca〉〈ge〉[ef ]
)

,

T 3
3 =

[ab]2[bc]2[gf ]〈e|KgfKbc|a〉7
2〈a|Kbc|d]tabc〈fg〉〈fe〉2〈c|Kab|d]tgfe〈g|KfeKbc|a〉

× 〈e|Kgf Kbc|a〉〈g|Kfe|d]〈dc〉 + 〈cg〉〈ed〉〈a|Kbc |d]tgfe
Q

x=e,g 〈x|Kefg|d]〈c|KabKefg|x〉
,

T 4
3 =

[ab]2[bc]2〈a|Kbc|f ]
(

〈ce〉〈a|Kbc|g] + 〈ca〉〈ef〉[fg]
)7

2〈ca〉[gd]〈cf〉〈fe〉2
Q

x=d,g 〈c|Kab|x]〈c|Kfe|x]

×
(

〈ce〉〈a|Kbc|g] + 〈ca〉〈ef〉[fg]
)

〈c|Kfe|d]〈dg〉 + 〈gc〉〈ed〉[dg]〈a|KdgKef |c〉
〈a|KdgKef |c〉〈c|KabKfe|c〉〈c|KabKdg|e〉

(

〈ce〉〈a|Kbc|d] + 〈ca〉〈ef〉[fd]
) ,

T 5
3 =

[ab]2[bc]2〈ae〉7〈dg〉[fg]7tabc

2[df ][dg]〈ec〉tdfg

Q

x=a,c〈x|Kdg|f ]
Q

y=d,g 〈e|Kdfg |y]
,

T 6
3 =

[ab]2[bc]2〈ca〉7〈de〉7〈ga〉[fg]7〈a|Kbc|d]

2〈dc〉
Q

x=f,g 〈c|Kab|x]〈ec〉〈a|KfgKde|c〉〈c|Kde|f ]〈c|KabKfg|e〉

× 1
(

〈da〉〈c|Kab|f ] + 〈ca〉〈dg〉[gf ]
)(

〈ce〉〈a|Kbc|g] + 〈ca〉〈ed〉[dg]
) ,

T 7
3 =

[ab]2[bc]2〈ae〉7〈cd〉〈a|Kbc|f ]7〈c|Kab|g]

2〈ca〉〈ag〉[df ]〈a|Kbc |d]〈eg〉〈a|KegKdf |c〉〈a|Keg |f ]〈e|Kdf Kbc|a〉

× 1
(

〈cg〉〈a|Kbc|f ] + 〈ca〉〈gd〉[df ]
)(

〈ea〉〈c|Kab|d] + 〈ca〉〈eg〉[gd]
) ,

T 8
3 =

[ab]2[bc]2〈de〉7〈a|Kbc|f ]7[dg]

2〈dg〉〈c|Kab |f ]tabc〈ge〉tdeg

Q

x=d,g 〈x|Kdeg|f ]
Q

y=a,c〈y|KabcKdg|e〉
,
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T 9
3 =

[ab]2[bc]2〈ae〉8〈c|Kab|f ]〈a|Kbc|g]7

2〈ca〉〈af〉[dg]〈a|Kbc |d]〈ef〉2〈a|KefKdg|c〉〈a|Kef Kbc|a〉〈e|KdgKbc|a〉

× 〈de〉〈gc〉〈a|Kbc |d]〈a|Kef |g] − 〈eg〉〈a|Kbc|g]〈cd〉〈a|Kef |d]
Q

x=d,g 〈a|Kef |x]
(

〈ea〉〈c|Kab|x] + 〈ca〉〈ef〉[fx]
)

,

T 10
3 =

[ab]2[bc]2〈de〉8[df ]〈a|Kbc|g]7

2〈df〉〈c|Kab|g]tabc〈ef〉2tdef

〈ae〉〈cg〉tabc〈d|Kef |g] + 〈eg〉〈a|Kbc|g]〈c|KabKef |d〉
Q

x=d,e

Q

y=a,c〈x|Kdef |g]〈y|KabcKdef |x〉
,

T 11
3 =

[ab]2[bc]2〈a|Kbc|f ]8〈ce〉〈da〉7
2〈ca〉〈a|Kbc|e]〈gd〉〈ga〉[fe]2〈a|KdgKef |c〉〈a|KfeKbc|a〉〈a|Kdg |f ]

× [fg]〈c|Kab|d]〈ag〉〈d|KfeKbc|a〉 + [fd]〈da〉〈c|Kab|g]〈g|KfeKbc|a〉
Q

x=d,g 〈x|KfeKbc|a〉
(

〈cx〉〈a|Kbc|f ] + 〈ca〉〈xe〉[ef ]
)

,

T 12
3 =

[ab]2[bc]2[gf ]8〈ge〉〈da〉7
(

− 〈a|Kbc|f ]〈c|Kab|d]〈d|Kfe|g] + [fd]〈da〉tabc〈c|Kfe|g]
)

2[ge]〈cd〉[fe]2tgfe

Q

x=a,c,d

Q

y=f,g 〈x|Kefg|y]
,

T 13
3 =

[ab]2[bc]2〈ad〉〈a|Kbc|g]
(

〈ea〉〈c|Kab|f ] + 〈ca〉〈ed〉[df ]
)8

2〈ca〉
Q

x=d,f 〈c|Kab|x][df ]〈eg〉〈ce〉〈gc〉〈a|Kdf Keg|c〉〈c|Keg|f ]〈c|KabKdf |e〉

× 1
(

〈ga〉〈c|Kab|f ] + 〈ca〉〈gd〉[df ]
)(

〈ce〉〈a|Kbc|d] + 〈ca〉〈eg〉[gd]
) .

(A.19)

P4 has the additional complication that we must sum over the full N = 8 multiplet

running in the loop. We obtain a form based on P3 with relative factors for each T i
3 . We

also obtain one extra term which is not present in P3. We get,

P
[a,b,c,d,e,f,g]
4 =

13
∑

i1

(

Y i
4 )8T i

3 + T 14
4 , (A.20)
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where,

Y 1
4 = − 〈b|Kde|f ]

〈a|Kde|f ]
,

Y 2
4 =

〈bd〉〈c|Kab|f ] + 〈bc〉〈de〉[ef ]

〈da〉〈c|Kab|f ] + 〈ca〉〈de〉[ef ]
,

Y 3
4 = − 〈b|KacKfg|e〉

〈a|KbcKfg|e〉
,

Y 4
4 = − 〈ce〉〈b|Kac|g] + 〈cb〉〈ef〉[fg]

〈ce〉〈a|Kbc|g] + 〈ca〉〈ef〉[fg]
,

Y 5
4 =

〈eb〉
〈ae〉 ,

Y 6
4 =

〈bc〉
〈ca〉 ,

Y 7
4 =

〈eb〉〈a|Kbc|f ] − 〈ba〉〈ed〉[df ]

〈ae〉〈a|Kbc|f ]
,

Y 8
4 = − 〈b|Kac|f ]

〈a|Kbc|f ]
,

Y 9
4 =

〈be〉〈a|Kbc|g] + 〈ba〉〈ed〉[dg]

〈ea〉〈a|Kbc|g]
,

Y 10
4 = − 〈b|Kac|g]

〈a|Kbc|g]
,

Y 11
4 =

〈bd〉〈a|Kbc|f ] + 〈ba〉〈de〉[ef ]

〈da〉〈a|Kbc|f ]
,

Y 12
4 =

〈db〉
〈ad〉 ,

Y 13
4 =

〈be〉〈c|Kab|f ] + 〈bc〉〈ed〉[df ]

〈ea〉〈c|Kab|f ] + 〈ca〉〈ed〉[df ]
,

T 14
4 =

(〈ab〉
〈ca〉

)8

T 6
3 (a ↔ c).

(A.21)

Last comes P5 which has been obtained from the amplitude of Cachazo and Svrček by

letting 5 and 6 be the internal gravitons. We get,

P
[a,b,c,d,e,f,g]
5 =T 1

5 + T 1
5 (d ↔ e) + T 2

5 + T 2
5 (a ↔ c)

+ T 3
5 + T 3

5 (d ↔ e) + T 3
5 (a ↔ c) + T c

3 (a ↔ c, d ↔ e)

+ T 4
5 + T 4

5 (d ↔ e) + T 5
5 + T 5

5 (a ↔ c) + T 6
5 ,

(A.22)
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where,

T 1
5 =

[ab]2[bc]2〈ef〉〈d|Kef |g]7
(

〈d|Kef |g]〈a|Kfg |e]〈c|Kab|d] − [de]〈c|Kab|g]〈ad〉tefg

)

2〈da〉〈cd〉[ef ][fg]2tefg〈d|Kfg |e]
Q

x=e,g 〈a|Kefg|x]〈c|Kefg |x]
,

T 2
5 =

[ab]2[bc]2〈c|Kab|g]〈f |KdeKbc|a〉7
2〈ca〉〈ag〉〈gf〉2 [ed]〈a|Kgf Kde|c〉〈a|KfgKbc|a〉

× 〈f |KdeKbc|a〉〈a|Kgf |e]〈ec〉 − 〈fe〉〈a|Kbc|e]〈a|Kgf Kde|c〉
Q

x=d,e〈a|Kbc|x]〈a|Kfg |x]
(

〈fa〉〈c|Kab|x] + 〈ca〉〈fg〉[gx]
)

,

T 3
5 =

[ab]2[bc]2〈df〉7〈ea〉〈c|Kab|g]7〈a|Kbc|d]

2〈ca〉〈dc〉[eg]〈c|Kab |e]〈fc〉〈a|KegKdf |c〉〈c|Kdf |g]〈f |KegKab|c〉

× 1
(

〈da〉〈c|Kab|g] + 〈ca〉〈de〉[eg]
)(

〈cf〉〈a|Kbc|e] + 〈ca〉〈fd〉[de]
) ,

T 4
5 =

[ab]2[bc]2〈df〉8[dg]t7abc

(

〈ef〉〈a|Kbc|e]〈c|KabKfg|d〉 + 〈fa〉tabc〈ce〉〈d|Kfg |e]
)

2〈gd〉〈fg〉2tdfg

Q

x=d,f

Q

y=a,c〈x|Kdfg |e]〈y|Kabc|e]〈y|KabcKdfg |x〉
,

T 5
5 =

[ab]2[bc]2〈a|Kbc|g]8〈cf〉〈ed〉7
2〈ca〉〈a|Kbc|f ]〈ae〉〈ad〉[gf ]2〈a|KdeKgf |c〉〈a|Kde|g]

× 〈c|Kab|g][ed]〈da〉〈e|KfgKbc|a〉 + [ge]〈de〉〈c|Kab |d]〈a|KfgKbc|a〉
〈a|KfgKbc|a〉

Q

x=d,e

(

〈cx〉〈a|Kbc|g] + 〈ca〉〈xf〉[fg]
)

〈x|KfgKbc|a〉
,

T 6
5 =

[ab]2[bc]2〈de〉tabc〈f |Kde|g]8

2[de][dg][eg]〈fa〉〈fc〉tdeg 〈a|Kde|g]〈c|Kde|g]〈f |Keg|d]〈f |Kdg |e]
.

(A.23)

B. Relations between box coefficients

The box-coefficients exhibit a large number of relations. As a consequence of the IR

structure many combinations can be used to create expressions for the tree amplitudes.

This has in fact been used to obtain relatively compact formulae for tree amplitudes [19, 60]

and gave rise to the BCFW recursion relations [39]. Since the IR relations are satisfied,

the box-coefficients are related to the tree amplitudes and in fact yield a form of the tree

amplitude which is equivalent to that obtained via recursion. Before commencing it is

convenient to define scaled box-coefficients5,

ĉ1m[a, b, c, {d, e, f, g}] ≡ c1m[a, b, c, {d, e, f, g}]
sabsbc

,

ĉ2m h[a, {b, c}, {d, e, f}, g] ≡ c2m h[a, {b, c}, {d, e, f}, g]

sgatabc
,

ĉ2m e[a, {b, c}, d, {e, f, g}] ≡ c2m e[a, {b, c}, d, {e, f, g}]
tabctbcd − sbctefg

.

(B.1)

We will also use this notation to indicate the scaled functions which define the box-

coefficients.

5The scaling factors are essentially the momentum prefactors appearing in the integral functions.

– 30 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

B.1 Expressions for tree amplitudes

For the seven-point one-loop NMHV amplitude there are circa 1000 independent boxes

with each box coefficient containing two or more terms. We can extract the tree by looking

at the coefficient of a specific logarithm: there being three independent choices: ln(−s12),

ln(−s45) and ln(−s34). If we take the coefficient of ln(−s12) then only a subset of boxes

will contribute to this. Contained within this is a further subset where the legs 1 and 2 are

massless and the boxes are the one-mass and two-mass hard.

M tree
7 =

(

F̂
[1,2,3,4,5,6,7]
0 + {1 ↔ 2}

)

+
(

F̂
[1,2,4,3,5,6,7]
1 + F̂

[1,2,5,3,4,6,7]
1 + F̂

[1,2,6,3,5,4,7]
1 + F̂

[1,2,7,3,5,6,4]
1 + {1 ↔ 2}

)

+
(

P̂
[1,2,3,4,5,6,7]
1 + P̂

[1,2,3,5,4,6,7]
1 + P̂

[1,2,3,6,5,4,7]
1 + P̂

[1,2,3,7,5,6,4]
1 + {1 ↔ 2}

)

+
(

Ĝ
[2,3,4,5,6,7,1]
8 + Ĝ

[2,3,5,4,6,7,1]
8 + Ĝ

[2,3,6,5,4,7,1]
8 + Ĝ

[2,3,7,5,6,4,1]
8 + {1 ↔ 2}

)

+
(

Ĥ
[2,3,4,5,6,7,1]
8 + Ĥ

[2,3,5,4,6,7,1]
8 + Ĥ

[2,3,6,5,4,7,1]
8 + Ĥ

[2,3,7,5,6,4,1]
8 + {1 ↔ 2}

)

+
(

Ĝ
[2,4,5,3,6,7,1]
9 + Ĝ

[2,4,6,3,5,7,1]
9 + Ĝ

[2,4,7,3,6,5,1]
9 + Ĝ

[2,5,6,3,4,7,1]
9

+ Ĝ
[2,5,7,3,4,6,1]
9 + Ĝ

[2,6,7,3,4,5,1]
9 + {1 ↔ 2}

)

+
(

Ĥ
[2,4,5,3,6,7,1]
9 + Ĥ

[2,4,6,3,5,7,1]
9 + Ĥ

[2,4,7,3,6,5,1]
9 + Ĥ

[2,5,6,3,4,7,1]
9

+ Ĥ
[2,5,7,3,4,6,1]
9 + Ĥ

[2,6,7,3,4,5,1]
9 + {1 ↔ 2}

)

.

(B.2)

Within this set there are two subsets which each yield the tree, e.g.

F̂
[1,2,3,4,5,6,7]
0 +

(

∑

(a,b,c,d)∈S1

F̂
[1,2,a,3,b,c,d]
1

)

+

(

∑

(a,b,c,d)∈S1

Ĝ
[1,3,a,b,c,d,2]
8

)

+

(

∑

(a,b,c,d)∈S2

Ĝ
[1,a,b,3,c,d,2]
9

)

+

(

∑

(a,b,c,d)∈S1

Ĥ
[2,3,a,b,c,d,1]
8

)

+

(

∑

(a,b,c,d)∈S2

Ĥ
[2,a,b,3,c,d,1]
9

)

+

(

∑

(a,b,c,d)∈S1

P̂
[2,1,3,a,b,c,d]
1

)

,

(B.3)

where,

S1 = {(4, 5, 6, 7), (5, 4, 6, 7), (6, 4, 5, 7), (7, 4, 5, 6)},
S2 = {(4, 5, 6, 7), (4, 6, 5, 7), (4, 7, 5, 6), (5, 6, 4, 7), (5, 7, 4, 6), (6, 7, 4, 5)}.

(B.4)

This provides a fairly compact realisation of the seven-point tree amplitude containing

twenty-nine individual terms. This collection of terms corresponds exactly to the terms

that would be obtained from a recursive calculation using legs 1 and 2 for the recursion.

The above expression has all the necessary symmetries although not all are manifest.

This subset of the box-coefficients corresponds to those terms where legs 1 and 2 are

isolated at massless corners and where these corners have the helicity structure indicated.
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1− 2−

a
b

c d
e

+ +
+−

1− 2−

a

b c
d
e

+ +
+−

1− 2−

a
bc d e

+ +
+−

1− 2−

a b c
d
e

+ +
+−

Alternate expressions may be obtained by examining the coefficients of ln(s45) and ln(s34).

B.2 The coefficient of ln(−t123)

A different type of relationship holds for the box-coefficients which contribute to the soft

divergence ln(−t123)/ε. These soft divergences are absent so the box coefficients are con-

spiring to make them cancel. There are three types of box giving this divergence: two-mass

easy, two-mass hard and one-mass. Specifically we must have,




∑

Z(1,2,3)

∑

Z(4,5,6,7)

ĉ2mh
(1−,{2−,3−},{4+,5+,6+},7+)



 −





∑

Z(1,2,3)

ĉ1m
(1−,2−,3−,{4+,5+,6+,7+})





−





∑

P(4,5,6,7)

ĉ2me
({1−,2−,3−},4+,{5+,6+},7+)



 = 0,

(B.5)

where Z denotes cyclic permutations and,

P(4,5,6,7) = {(4, 5, 6, 7), (4, 7, 5, 6), (4, 6, 7, 5), (5, 4, 6, 7), (5, 4, 7, 6), (6, 4, 5, 7)}.

This relationship is indeed satisfied since,

∑

Z(1,2,3)

∑

Z(4,5,6,7)

ĉ2mh
(1− ,{2−,3−},{4+,5+,6+},7+) = 2

∑

Z(1,2,3)

ĉ1m
(1−,2−,3−,{4+,5+,6+,7+}),

∑

P(4,5,6,7)

ĉ2me
({1−,2−,3−},4+,{5+,6+},7+) =

∑

Z(1,2,3)

ĉ1m
(1−,2−,3−,{4+,5+,6+},7+),

(B.6)

although clearly these two constraints are considerably stronger than the single constraint

(B.5).

C. Six-point tree amplitudes involving non-gravitons

To calculate the cuts of the seven-point amplitude we need the six-point NMHV amplitudes

where one pair of particles is of arbitrary type. The six-point amplitude is given in the

form,

M(1−, 2−, (l1)
−
h , (l2)

+
h , 5+, 6+) =

14
∑

i=1

Ti(h) =

14
∑

i=1

Ai(Xi)
2h, (C.1)

where h = 2 for a graviton, h = 3/2 for a gravitino, h = 1 for a vector, h = 1/2 for a Dirac

fermion and h = 0 for a scalar particle. The expression is also valid for negative values
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of h provided we recognise that this corresponds to a particle of the opposite helicity e.g.

1−−2 ≡ 1+
+2. The explicit forms of the Ti are given by,

T1 =
−i 〈12〉7 〈5l2〉 [2l1] [56]7

〈1l1〉〈2l1〉〈1|P12l1 |5]〈1|P12l1 |l2]〈2|P12l1 |6]〈l1|P12l1 |6][5l2][6l2]t12l1

[

δh,2

]

,

T2 =
−i 〈2l1〉〈1|P26l1 |6]8 [5l2]

〈15〉〈1l2〉〈5l2〉〈1|P26l1 |2]〈1|P26l1 |l1]〈5|P26l1 |6]〈l2|P26l1 |6][26][2l1][6l1]t26l1

[−i 〈1l2〉 [6l1]
〈1|P26l1 |6]

]A

,

T3 =
−i 〈12〉7 〈5l1〉 [2l2] [56]7

〈1l2〉〈2l2〉〈1|P56l1 |5]〈1|P56l1 |l1]〈2|P56l1 |6]〈l2|P56l1 |6][5l1][6l1]t56l1

[

δh,−2

]

,

T4 =
i 〈1l1〉7 〈25〉 [56]7 [l1l2]

〈1l2〉〈l1l2〉〈1|P256|2]〈1|P256 |5]〈l1|P256|6]〈l2|P256|6][25][26]t256

[

i 〈1l2〉
〈1l1〉

]A

,

T5 =
i 〈12〉7 〈l1l2〉 [25][6l2]7

〈15〉〈25〉〈1|P125|l1]〈1|P125 |l2]〈2|P125 |6]〈5|P125 |6][6l1] [l1l2]t125

[

i [6l1]

[6l2]

]A

,

T6 =
−i 〈1l1〉7 〈2l2〉 [5l1] [6l2]7

〈15〉〈5l1〉〈1|P15l1 |2]〈1|P15l1 |l2]〈5|P15l1 |6]〈l1|P15l1 |6][26][2l2]t15l1

[−i〈1|P15l1 |6]
〈1l1〉 [6l2]

]A

,

T7 =
i〈1|P156|l2]7(〈1l2〉〈2l1〉〈5|P156|l1] [2l2]− 〈1l1〉〈2l2〉〈5|P156|l2] [2l1]) [56]

〈16〉2 〈56〉〈1|P156|2]〈1|P156 |l1]〈5|P156 |2]〈5|P156 |l1]〈5|P156 |l2] [2l1] [2l2] [l1l2]t156

[

i〈1|P156 |l1]
〈1|P156|l2]

]A

,

T8 =
i〈1|P25l1 |5]7(〈15〉〈2l1〉〈l2|P25l1 |l1] [25]− 〈1l1〉〈25〉〈l2|P25l1 |5][2l1]) [6l2]

〈16〉2 〈6l2〉〈1|P25l1 |2]〈1|P25l1 |l1]〈l2|P25l1 |2]〈l2|P25l1 |5]〈l2|P25l1 |l1] [25][2l1][5l1]t25l1

[

i 〈l21〉 [5l1]
〈1|P25l1 |5]

]A

,

T9 =
i 〈1l1〉8 [5l2]

7 (〈1l2〉〈25〉〈l1|P16l1 |2][5l2]− 〈12〉〈5l2〉〈l1|P16l1 |l2] [25]) [6l1]

〈16〉2〈6l1〉〈1|P16l1 |2]〈1|P16l1 |5]〈1|P16l1 |l2]〈l1|P16l1 |2]〈l1|P16l1 |5]〈l1|P16l1 |l2] [25][2l2]t16l1

[

i〈1|P16l1 |5]
〈l11〉 [5l2]

]A

,

T10 =
i 〈12〉8 [26][5l2]

7 (〈1l2〉〈5l1〉〈2|P126|l1] [5l2]− 〈1l1〉〈5l2〉〈2|P126 |l2] [5l1])
〈16〉2 〈26〉〈1|P126|5]〈1|P126 |l1]〈1|P126 |l2]〈2|P126 |5]〈2|P126 |l1]〈2|P126 |l2] [5l1] [l1l2]t126

[

i [5l1]

[5l2]

]A

,

T11 =
i 〈15〉〈2l1〉7 [56]8 (〈2l2〉〈l1|P156|5][2l1] [6l2]− 〈2l1〉〈l2|P156|5][2l2] [6l1])

〈2l2〉〈l1l2〉〈2|P156|5]〈2|P156 |6]〈l1|P156|5]〈l1|P156|6]〈l2|P156|5]〈l2|P156|6][15][16]2 t156

[

i 〈2l2〉
〈2l1〉

]A

,

T12 =
−i 〈1l2〉〈2l1〉7 (〈25〉〈l1|P25l1 |l2] [2l1] [56]+ 〈2l1〉〈5|P25l1 |l2] [25] [6l1]) [6l2]

8

〈25〉〈5l1〉〈2|P25l1 |6]〈2|P25l1 |l2]〈5|P25l1 |6]〈5|P25l1 |l2]〈l1|P25l1 |6]〈l1|P25l1 |l2][1l2][16]2t25l1

[

i〈2|P25l1 |6]
〈l12〉 [6l2]

]A

,

T13 =
−i 〈1l1〉〈2|P16l1 |6]7(〈25〉〈l2|P16l1 |l1] [26] [5l2]+ 〈5l2〉〈2|P16l1 |l1] [25][6l2])

〈25〉〈2l2〉〈5l2〉〈2|P16l1 |l1]〈5|P16l1 |6]〈5|P16l1 |l1]〈l2|P16l1 |6]〈l2|P16l1 |l1] [16]2 [1l1]t16l1

[

i 〈l)22〉 [6l1]
〈2|P16l1 |6]

]A

,

T14 =
i 〈12〉〈l1|P126|6]7(〈5l2〉〈l1|P126|2][5l1] [6l2]− 〈5l1〉〈l2|P126|2][5l2] [6l1])

〈5l1〉〈5l2〉〈l1l2〉〈5|P126|2]〈5|P126 |6]〈l1|P126|2]〈l2|P126|2]〈l2|P126|6][12][16]2 t126

[

i〈l2|P126|6]
〈l1|P126|6]

]A

,

(C.2)

where A = 4 − 2h.
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D. Integral functions

D.1 Box functions

•
•

2 1

K43

I1m
4

••

•
•

K2 1

3 K4

I2me
4

•
• •

•

2 1

K4K3

I2mh
4

••

•
• •

•

K2
1

K4K3

I3m
4

••

•
• •

•

•
•

K2 K1

K4K3

I4m
4

The scalar box integrals considered here have vanishing internal masses, but may have

up to four non-vanishing external masses. Again by external masses we mean off-shell

legs with K2 6= 0. These integrals are defined and given in [61] (the four-mass box was

computed by Denner, Nierste, and Scharf [62]) and are shown in the figures above.

The scalar box integral is,

I4 = −i (4π)2−ε
∫

d4−2εp

(2π)4−2ε

1

p2 (p − K1)
2 (p − K1 − K2)

2 (p + K4)
2 . (D.1)

The external momentum arguments, Ki, are sums of external momenta ki. In general the

integrals are functions of the momentum invariants K2
i together with S ≡ (K1 + K2)

2 and

T = (K2 + K3)
2. The no-mass box is, to O(ε0) ,

I0m
4 [1] = rΓ

1

st

{

2

ε2

[

(−s)−ε + (−t)−ε
]

− ln2

(−s

−t

)

− π2

}

, (D.2)

where s = (k1 + k2)
2 and t = (k2 + k3)

2 are the usual Mandelstam variables. The factor

rΓ arises within dimensional regularisation and is,

rΓ =
1

(4π)2− ε

Γ(1 + ε) Γ2(1 − ε)

Γ(1 − 2 ε)
. (D.3)

This function appears only in four-point amplitudes with massless particles.

With the labelling of legs shown above, the scalar box integrals, I4, expanded to O(ε0)

for the different cases reduce to,

I1m
4 =

−2rΓ

ST

{

− 1

ε2

[

(−S)−ε + (−T )−ε − (−K2
4 )−ε

]

+ Li2

(

1 − K2
4

S

)

+ Li2

(

1 − K2
4

T

)

+
1

2
ln2

(

S

T

)

+
π2

6

}

,

(D.4)
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I2me
4 =

−2rΓ

ST − K2
2K2

4

{

− 1

ε2

[

(−S)−ε + (−T )−ε − (−K2
2 )−ε − (−K2

4 )−ε
]

+ Li2

(

1 − K2
2

S

)

+ Li2

(

1 − K2
2

T

)

+ Li2

(

1 − K2
4

S

)

+ Li2

(

1 − K2
4

T

)

− Li2

(

1 − K2
2K2

4

ST

)

+
1

2
ln2

(

S

T

)}

,

(D.5)

I2mh
4 =

−2rΓ

ST

{

− 1

ε2

[

(−S)−ε + (−T )−ε − (−K2
3 )−ε − (−K2

4 )−ε
]

− 1

2ε2

(−K2
3 )−ε(−K2

4 )−ε

(−S)−ε
+

1

2
ln2

(

S

T

)

+ Li2

(

1 − K2
3

T

)

+ Li2

(

1 − K2
4

T

)}

,

(D.6)

I3m
4 =

−2rΓ

ST − K2
2K2

4

{

− 1

ε2

[

(−S)−ε + (−T )−ε − (−K2
2 )−ε − (−K2

3 )−ε − (−K2
4 )−ε

]

− 1

2ε2

(−K2
2 )−ε(−K2

2 )−ε

(−T )−ε
− 1

2ε2

(−K2
3 )−ε(−K2

4 )−ε

(−T )−ε
+

1

2
ln2

(

S

T

)

+ Li2

(

1 − K2
2

S

)

+ Li2

(

1 − K2
4

T

)

− Li2

(

1 − K2
2K2

4

ST

)}

,

(D.7)

I4m
4 =

−rΓ

S T ρ

{

−Li2
(

1
2(1 − λ1 + λ2 + ρ)

)

+ Li2
(

1
2 (1 − λ1 + λ2 − ρ)

)

− Li2

(

− 1
2λ1

(1 − λ1 − λ2 − ρ)
)

+ Li2

(

− 1
2λ1

(1 − λ1 − λ2 + ρ)
)

− 1

2
ln

(

λ1

λ2
2

)

ln

(

1 + λ1 − λ2 + ρ

1 + λ1 − λ2 − ρ

)}

,

(D.8)

where,

ρ ≡
√

1 − 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2 , (D.9)

and,

λ1 =
K2

2 K2
4

S T
, λ2 =

K2
1 K2

3

S T
. (D.10)

When checking the soft divergences of the seven-point amplitude we need the 1/ε

singularities arising from soft singularities in the loop integration. For the boxes relevant

to the seven-point amplitude these are,

Iabc{defg}|1/ε = − 2

sabsbc(4π)2

[ ln(−sab) + ln(−sbc) − ln(−tabc)

ε

]

,

Ia(bc)(def)g |1/ε = − 2

sagtabc(4π)2

[ ln(−sag) + 2 ln(−tabc) − ln(−sbc) − ln(−tdef )

2ε

]

,

Ia(bc)d(efg)|1/ε =− 2

(tabctbcd−sbctefg)(4π)2

[ ln(−tabc) + ln(−tbcd)−ln(−sbc)−ln(−tefg)

ε

]

,

Ia(bc)(de)(fg)|1/ε =− 2

(tabctfga−sbcsfg)(4π)2

[ ln(−tabc)+ln(−tfga)−ln(−sbc)−ln(−sfg)

2ε
)
]

.

(D.11)
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D.2 Triangle and Bubble integral functions

Triangle integral functions may have one, two or three massless legs:

•

•

•

•
•

•

•

•

The one-mass triangle depends only on the momentum invariant of the massive leg,

I1m
3 =

rΓ

ε2
(−K2

1 )−1−ε . (D.12)

The next integral function is the two-mass triangle integral,

I2m
3 =

rΓ

ε2

(−K2
1 )−ε − (−K2

2 )−ε

(−K2
1 ) − (−K2

2 )
. (D.13)

Note that the one and two mass triangles are linear combinations of the set of functions,

G(−K2) = rΓ
(−K2)−ε

ε2
, (D.14)

with,

I1m
3 = G(−K2

1 ) , I2m
3 =

1

(−K2
1 ) − (−K2

2 )

(

G(−K2
1 ) − G(−K2

2 )
)

. (D.15)

The G(−K2) are labelled by the independent momentum invariants K2 and in fact form

an independent basis of functions, unlike the one and two-mass triangles which are not all

independent. For example, for six-point kinematics there are only twenty-five independent

options for K2 corresponding to 15 independent sij’s and 10 independent tijk’s, whereas

there are 15 one-mass triangles and 60 two-mass triangles.

The final scalar triangle is the three-mass integral function. The evaluation of this

integral is more involved, and can be obtained from [63, 61],

I3m
3 =

i√
∆3

3
∑

j=1

[

Li2

(

−
(

1 + iδj

1 − iδj

))

− Li2

(

−
(

1 − iδj

1 + iδj

))]

+ O(ε), (D.16)

where,

δ1 =
K2

1 − K2
2 − K2

3√
∆3

,

δ2 =
−K2

1 + K2
2 − K2

3√
∆3

,

δ3 =
−K2

1 − K2
2 + K2

3√
∆3

,

(D.17)
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and

∆3 ≡ −(K2
1 )2 − (K2

2 )2 − (K2
3 )2 + 2(K2

1K2
2 + K2

3K2
1 + K2

2K2
3 ). (D.18)

Finally, the bubble integral is,

I2(K
2) =

rΓ

ε(1 − 2ε)
(−K2)−ε. (D.19)

References

[1] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys.

Lett. B 76 (1978) 409; The N = 8 supergravity theory, 1. The lagrangian, Phys. Lett.

B 80 (1978) 48.

[2] Z. Bern, N.E.J. Bjerrum-Bohr and D.C. Dunbar, Inherited twistor-space structure of

gravity loop amplitudes, JHEP 05 (2005) 056 [hep-th/0501137].

[3] S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity,

Phys. Rev. Lett. 38 (1977) 527;

R.E. Kallosh, Counterterms in extended supergravities, Phys. Lett. B 99 (1981) 122;

P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981)

445.

[4] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the

relationship between Yang-Mills theory and gravity and its implication for ultraviolet

divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162]; Perturbative relations

between gravity and gauge theory, Class. and Quant. Grav. 17 (2000) 979

[hep-th/9911194].

[5] G. Passarino and M.J.G. Veltman, One loop corrections for e+e− annihilation into

µ+µ− in the Weinberg model, Nucl. Phys. B 160 (1979) 151.

[6] Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys.

Rev. Lett. 66 (1991) 1669; The computation of loop amplitudes in gauge theories,

Nucl. Phys. B 379 (1992) 451;

Z. Bern, A compact representation of the one loop n gluon amplitude, Phys. Lett. B

296 (1992) 85.

[7] Z. Bern and D.C. Dunbar, A mapping between feynman and string motivated one

loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562.

[8] B. S. Dewitt, Phys. Rev. 160 (1967) 1113; Phys. Rev. 162 (1967) 1239;

M. Veltman, in Les Houches 1975, Proceedings, methods in field theory Amsterdam

1976;

S. Sannan, Gravity as the limit of the type-II superstring theory, Phys. Rev. D 34

(1986) 1749.

– 37 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB76%2C409
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB76%2C409
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB80%2C48
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB80%2C48
http://jhep.sissa.it/stdsearch?paper=05%282005%29056
http://arxiv.org/abs/hep-th/0501137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C38%2C527
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB99%2C122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB191%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB191%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB530%2C401
http://arxiv.org/abs/hep-th/9802162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C979
http://arxiv.org/abs/hep-th/9911194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB160%2C151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C66%2C1669
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C66%2C1669
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB379%2C451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB296%2C85
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB296%2C85
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB379%2C562
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD34%2C1749
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD34%2C1749


J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

[9] H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of

closed and open strings, Nucl. Phys. B 269 (1986) 1.

[10] S. Weinberg, Phenomenological lagrangians, Physica A 96 (1979) 327;

J.F. Donoghue, General relativity as an effective field theory: the leading quantum

corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057];

N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational

corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67

(2003) 084033 [hep-th/0211072]; Quantum corrections to the schwarzschild and kerr

metrics, Phys. Rev. D 68 (2003) 084005 [hep-th/0211071].

[11] N.E.J. Bjerrum-Bohr, String theory and the mapping of gravity into gauge theory,

Phys. Lett. B 560 (2003) 98 [hep-th/0302131]; Generalized string theory mapping

relations between gravity and gauge theory, Nucl. Phys. B 673 (2003) 41

[hep-th/0305062];

N.E.J. Bjerrum-Bohr and K. Risager, String theory and the klt-relations between

gravity and gauge theory including external matter, Phys. Rev. D 70 (2004) 086011

[hep-th/0407085].

[12] Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys.

Rev. Lett. 84 (2000) 3531 [hep-th/9912033].

[13] Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity,

Phys. Lett. B 312 (1993) 277 [hep-th/9307001].

[14] D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using

string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014];

D.C. Dunbar and N.W.P. Turner, Gravity and form scattering and renormalisation

of gravity in six and eight dimensions, Class. and Quant. Grav. 20 (2003) 2293

[hep-th/0212160];

D.C. Dunbar, B. Julia, D. Seminara and M. Trigiante, Counterterms in type-I

supergravities, JHEP 01 (2000) 046 [hep-th/9911158].

[15] M.B. Green, J.H. Schwarz and L. Brink, Nucl. Phys. B 198 (1982) 472.

[16] Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity

amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140].

[17] N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Six-point one-loop N = 8

supergravity nmhv amplitudes and their ir behaviour, Phys. Lett. B 621 (2005) 183

[hep-th/0503102]; Perturbative gravity and twistor space, Nucl. Phys. 160 (Proc.

Suppl.) (2006) 215 [hep-th/0606268]; Similarities of gauge and gravity amplitudes,

hep-th/0608007.

[18] Z. Bern, V. Del Duca, L.J. Dixon and D.A. Kosower, All

non-maximally-helicity-violating one-loop seven-gluon amplitudes in N = 4

super-Yang-Mills theory, Phys. Rev. D 71 (2005) 045006 [hep-th/0410224].

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB269%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C3874
http://arxiv.org/abs/gr-qc/9405057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C084033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C084033
http://arxiv.org/abs/hep-th/0211072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C084005
http://arxiv.org/abs/hep-th/0211071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB560%2C98
http://arxiv.org/abs/hep-th/0302131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB673%2C41
http://arxiv.org/abs/hep-th/0305062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C086011
http://arxiv.org/abs/hep-th/0407085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C3531
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C3531
http://arxiv.org/abs/hep-th/9912033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB312%2C277
http://arxiv.org/abs/hep-th/9307001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB433%2C181
http://arxiv.org/abs/hep-th/9408014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C2293
http://arxiv.org/abs/hep-th/0212160
http://jhep.sissa.it/stdsearch?paper=01%282000%29046
http://arxiv.org/abs/hep-th/9911158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB546%2C423
http://arxiv.org/abs/hep-th/9811140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C183
http://arxiv.org/abs/hep-th/0503102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C160%2C215
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C160%2C215
http://arxiv.org/abs/hep-th/0606268
http://arxiv.org/abs/hep-th/0608007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C045006
http://arxiv.org/abs/hep-th/0410224


J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

[19] Z. Bern, L.J. Dixon and D.A. Kosower, All next-to-maximally helicity-violating

one-loop gluon amplitudes in N = 4 super-Yang-Mills theory, Phys. Rev. D 72

(2005) 045014 [hep-th/0412210].

[20] F. Cachazo, P. Svrcek and E. Witten, Gauge theory amplitudes in twistor space and

holomorphic anomaly, JHEP 10 (2004) 077 [hep-th/0409245].

[21] I. Bena, Z. Bern, D.A. Kosower and R. Roiban, Loops in twistor space, Phys. Rev. D

71 (2005) 106010 [hep-th/0410054].

[22] R. Britto, F. Cachazo and B. Feng, Computing one-loop amplitudes from the

holomorphic anomaly of unitarity cuts, Phys. Rev. D 71 (2005) 025012

[hep-th/0410179].

[23] S.J. Bidder, N.E.J. Bjerrum-Bohr, L.J. Dixon and D.C. Dunbar, N = 1

supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity cuts,

Phys. Lett. B 606 (2005) 189 [hep-th/0410296].

[24] S.J. Bidder, N.E.J. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins, Twistor space

structure of the box coefficients of N = 1 one-loop amplitudes, Phys. Lett. B 608

(2005) 151 [hep-th/0412023].

[25] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop

amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108].

[26] S.J. Bidder, N.E.J. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins, One-loop gluon

scattering amplitudes in theories with N < 4 supersymmetries, Phys. Lett. B 612

(2005) 75 [hep-th/0502028].

[27] S.J. Bidder, D.C. Dunbar and W.B. Perkins, Supersymmetric ward identities and

nmhv amplitudes involving gluinos, JHEP 08 (2005) 055 [hep-th/0505249].

[28] C. Quigley and M. Rozali, One-loop mhv amplitudes in supersymmetric gauge

theories, JHEP 01 (2005) 053 [hep-th/0410278];

J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to

one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 706

(2005) 100 [hep-th/0410280].

[29] A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in

N = 4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150

[hep-th/0407214].

[30] R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in

SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132].

[31] Z. Bern, N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Recursive calculation of

one-loop QCD integral coefficients, JHEP 11 (2005) 027 [hep-ph/0507019];

– 39 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C045014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C045014
http://arxiv.org/abs/hep-th/0412210
http://jhep.sissa.it/stdsearch?paper=10%282004%29077
http://arxiv.org/abs/hep-th/0409245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C106010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C106010
http://arxiv.org/abs/hep-th/0410054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C025012
http://arxiv.org/abs/hep-th/0410179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB606%2C189
http://arxiv.org/abs/hep-th/0410296
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB608%2C151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB608%2C151
http://arxiv.org/abs/hep-th/0412023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB712%2C59
http://arxiv.org/abs/hep-th/0412108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB612%2C75
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB612%2C75
http://arxiv.org/abs/hep-th/0502028
http://jhep.sissa.it/stdsearch?paper=08%282005%29055
http://arxiv.org/abs/hep-th/0505249
http://jhep.sissa.it/stdsearch?paper=01%282005%29053
http://arxiv.org/abs/hep-th/0410278
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB706%2C100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB706%2C100
http://arxiv.org/abs/hep-th/0410280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB706%2C150
http://arxiv.org/abs/hep-th/0407214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C065012
http://arxiv.org/abs/hep-ph/0503132
http://jhep.sissa.it/stdsearch?paper=11%282005%29027
http://arxiv.org/abs/hep-ph/0507019


J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

Recursive approach to one-loop QCD matrix elements, Nucl. Phys. 157 (Proc.

Suppl.) (2006) 120 [hep-ph/0603187];

N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Exploiting twistor techniques for

one-loop QCD amplitudes, Nucl. Phys. 160 (Proc. Suppl.) (2006) 66

[hep-ph/0606290].

[32] D.C. Dunbar and P.S. Norridge, Infinities within graviton scattering amplitudes,

Class. and Quant. Grav. 14 (1997) 351 [hep-th/9512084].

[33] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217

[hep-ph/9403226].

[34] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree

amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265].

[35] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in

N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103].

[36] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun.

Math. Phys. 252 (2004) 189 [hep-th/0312171].

[37] F. Cachazo, P. Svrcek and E. Witten, Mhv vertices and tree amplitudes in gauge

theory, JHEP 09 (2004) 006 [hep-th/0403047].

[38] R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes,

Phys. Rev. D 73 (2006) 105004 [hep-ph/0602178].

[39] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of

gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308];

R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion

relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052].

[40] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A recursion relation for

gravity amplitudes, Nucl. Phys. B 721 (2005) 98 [hep-th/0502146].

[41] F. Cachazo and P. Svrcek, Tree level recursion relations in general relativity,

hep-th/0502160.

[42] N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager,

MHV-vertices for gravity amplitudes, JHEP 01 (2006) 009 [hep-th/0509016].

[43] K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206].

[44] P. Mansfield, The lagrangian origin of MHV rules, JHEP 03 (2006) 037

[hep-th/0511264];

A. Gorsky and A. Rosly, From Yang-Mills lagrangian to MHV diagrams, JHEP 01

(2006) 101 [hep-th/0510111];

– 40 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C157%2C120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C157%2C120
http://arxiv.org/abs/hep-ph/0603187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C160%2C66
http://arxiv.org/abs/hep-ph/0606290
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C351
http://arxiv.org/abs/hep-th/9512084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB425%2C217
http://arxiv.org/abs/hep-ph/9403226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB435%2C59
http://arxiv.org/abs/hep-ph/9409265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB725%2C275
http://arxiv.org/abs/hep-th/0412103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://arxiv.org/abs/hep-th/0312171
http://jhep.sissa.it/stdsearch?paper=09%282004%29006
http://arxiv.org/abs/hep-th/0403047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C105004
http://arxiv.org/abs/hep-ph/0602178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C499
http://arxiv.org/abs/hep-th/0412308
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C181602
http://arxiv.org/abs/hep-th/0501052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C98
http://arxiv.org/abs/hep-th/0502146
http://arxiv.org/abs/hep-th/0502160
http://jhep.sissa.it/stdsearch?paper=01%282006%29009
http://arxiv.org/abs/hep-th/0509016
http://jhep.sissa.it/stdsearch?paper=12%282005%29003
http://arxiv.org/abs/hep-th/0508206
http://jhep.sissa.it/stdsearch?paper=03%282006%29037
http://arxiv.org/abs/hep-th/0511264
http://jhep.sissa.it/stdsearch?paper=01%282006%29101
http://jhep.sissa.it/stdsearch?paper=01%282006%29101
http://arxiv.org/abs/hep-th/0510111


J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

J.H. Ettle and T.R. Morris, Structure of the MHV-rules lagrangian, JHEP 08 (2006)

003 [hep-th/0605121].

[45] W.L. van Neerven, Dimensional regularization of mass and infrared singularities in

two loop on-shell vertex functions, Nucl. Phys. B 268 (1986) 453.

[46] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B

467 (1996) 479 [hep-ph/9511336].

[47] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4

super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127].

[48] A. Brandhuber, S. McNamara, B.J. Spence and G. Travaglini, Loop amplitudes in

pure Yang-Mills from generalised unitarity, JHEP 10 (2005) 011 [hep-th/0506068].

[49] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop

QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240]; The last of the

finite loop amplitudes in QCD, Phys. Rev. D 72 (2005) 125003 [hep-ph/0505055];

Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013

[hep-ph/0507005].

[50] C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping

one-loop QCD amplitudes with general helicities, Phys. Rev. D 74 (2006) 036009

[hep-ph/0604195].

[51] D. Forde and D.A. Kosower, All-multiplicity one-loop corrections to MHV amplitudes

in QCD, Phys. Rev. D 73 (2006) 061701 [hep-ph/0509358].

[52] Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447

(1995) 465 [hep-ph/9503236].

[53] Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude, III. The

six-gluon, Nucl. Phys. B 758 (2006) 53 [hep-ph/0607017].

[54] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials

in one-loop amplitudes, hep-ph/0609054.

[55] F.A. Berends, W.T. Giele and H. Kuijf, On relations between multi-gluon and

multigraviton scattering, Phys. Lett. B 211 (1988) 91.

[56] P.S. Howe and K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554

(2003) 190 [hep-th/0211279].

[57] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP

08 (2004) 009 [hep-th/0406051]; An alternative string theory in twistor space for

N = 4 super-Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045].

[58] M. Abou-Zeid, C.M. Hull and L.J. Mason, Einstein supergravity and new twistor

string theories, hep-th/0606272.

– 41 –

http://jhep.sissa.it/stdsearch?paper=08%282006%29003
http://jhep.sissa.it/stdsearch?paper=08%282006%29003
http://arxiv.org/abs/hep-th/0605121
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB268%2C453
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB467%2C479
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB467%2C479
http://arxiv.org/abs/hep-ph/9511336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB394%2C105
http://arxiv.org/abs/hep-th/9611127
http://jhep.sissa.it/stdsearch?paper=10%282005%29011
http://arxiv.org/abs/hep-th/0506068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C105013
http://arxiv.org/abs/hep-th/0501240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C125003
http://arxiv.org/abs/hep-ph/0505055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C065013
http://arxiv.org/abs/hep-ph/0507005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C036009
http://arxiv.org/abs/hep-ph/0604195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C061701
http://arxiv.org/abs/hep-ph/0509358
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C465
http://arxiv.org/abs/hep-ph/9503236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB758%2C53
http://arxiv.org/abs/hep-ph/0607017
http://arxiv.org/abs/hep-ph/0609054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB211%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB554%2C190
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB554%2C190
http://arxiv.org/abs/hep-th/0211279
http://jhep.sissa.it/stdsearch?paper=08%282004%29009
http://jhep.sissa.it/stdsearch?paper=08%282004%29009
http://arxiv.org/abs/hep-th/0406051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C011601
http://arxiv.org/abs/hep-th/0402045
http://arxiv.org/abs/hep-th/0606272


J
H
E
P
1
2
(
2
0
0
6
)
0
7
2

[59] Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple bremsstrahlung in

massless nonabelian gauge theories, Nucl. Phys. B 291 (1987) 392.

[60] R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into

QCD tree amplitudes, Phys. Rev. Lett. 94 (2005) 102002 [hep-th/0412265].

[61] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals,

Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240].

[62] A. Denner, U. Nierste and R. Scharf, A compact expression for the scalar one loop

four point function, Nucl. Phys. B 367 (1991) 637.

[63] H.J. Lu and C. Perez, SLAC–PUB–5809.

– 42 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB291%2C392
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C102002
http://arxiv.org/abs/hep-th/0412265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB412%2C751
http://arxiv.org/abs/hep-ph/9306240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB367%2C637

